European sea bass (Dicentrarchus labrax) is a large, economically important fish species with a long generation time whose long-term resilience to ocean acidification (OA) and warming (OW) is not clear. We incubated sea bass from Brittany (France) for two generations (>5 years in total) under ambient and predicted OA conditions (PCO2: 650 and 1700 µatm) crossed with ambient and predicted ocean OW conditions in F1 (temperature: 15-18°C and 20-23°C) to investigate the effects of climate change on larval and juvenile growth and metabolic rate.

We found that in F1, OA as single stressor at ambient temperature did not affect larval or juvenile growth and OW increased developmental time and growth rates, but OAW decreased larval size at metamorphosis. Larval routine and juvenile standard metabolic rates were significantly lower in cold compared to warm conditioned fish and also lower in F0 compared to F1 fish. We did not find any effect of OA as a single stressor on metabolic rates. Juvenile PO2crit was not affected by OA or OAW in both generations.

We discuss the potential underlying mechanisms resulting in the resilience of F0 and F1 larvae and juveniles to OA and in the beneficial effects of OW on F1 larval growth and metabolic rate, but on the other hand in the vulnerability of F1, but not F0 larvae to OAW. With regard to the ecological perspective, we conclude that recruitment of larvae and early juveniles to nursery areas might decrease under OAW conditions but individuals reaching juvenile phase might benefit from increased performance at higher temperatures.

This content is only available via PDF.

Article PDF first page preview

Article PDF first page preview