Juvenile rainbow trout (Oncorhynchus mykiss) held in pairs form dominance hierarchies in which subordinate individuals experience chronic social stress accompanied by lowered thermal tolerance (assessed as the critical thermal maximum, CTmax). Here we tested the hypothesis that chronic elevation of circulating cortisol levels reduces thermal tolerance in subordinate trout. In support of this hypothesis, subordinate trout that recovered from social stress for 48 h, a period sufficient to return cortisol to normal baseline levels, no longer showed reduced CTmax. Further, thermal tolerance was not restored in subordinates treated with cortisol during recovery from social stress. To explore possible mechanisms underlying the effect of chronic stress on CTmax, we also tested the hypothesis that chronic cortisol elevation induces cardiac remodelling in subordinate trout, as previously reported for cortisol-treated rainbow trout. Ventricle mass and cardiac hypertrophy markers were unaffected by social stress. Picrosirius red staining revealed a trend for lower collagen levels in the ventricles of subordinate relative to dominant trout. However, collagen type I transcript and protein levels, and markers of collagen turnover were unaffected. Indicators of cardiac function, including ventricle passive stiffness and intrinsic heart rate (fH), similarly were unaffected. In vivo fH was also similar between subordinate and dominant fish. Nevertheless, in keeping with their lower CTmax, subordinate fish exhibited cardiac arrhythmia at significantly lower temperatures than dominant fish during CTmax trials. Thus, high baseline cortisol levels in subordinate trout result in lowered thermal tolerance, but 5 d of social stress did not greatly affect cardiac structure and function.
Elevated cortisol lowers thermal tolerance but results in limited cardiac remodelling in rainbow trout (Oncorhynchus mykiss) experiencing chronic social stress
Currently Viewing Accepted Manuscript - Newer Version Available
- Split-screen
- Views Icon Views
-
Article Versions Icon
Versions
- Version of Record 05 July 2021
- Accepted Manuscript 07 June 2021
- Share Icon Share
-
Tools Icon
Tools
- Search Site
Brittany Bard, Annette Dodge, William Joyce, Michael Lawrence, Steven J Cooke, Kathleen M Gilmour; Elevated cortisol lowers thermal tolerance but results in limited cardiac remodelling in rainbow trout (Oncorhynchus mykiss) experiencing chronic social stress. J Exp Biol 2021; jeb.238683. doi: https://doi.org/10.1242/jeb.238683
Download citation file:
Advertisement
In the field: an interview with Harald Wolf
(update)-Conversation.jpg?versionId=3747)
In our new Conversation, Harald Wolf talks about his fieldwork experiences working with desert ants in Tunisia to understand their navigation.
Propose a new Workshop
-GSWorkshop.png?versionId=3747)
Our Workshops bring together leading experts and early-career researchers from a range of scientific backgrounds. Applications are now open to propose Workshops for 2024, one of which will be held in a Global South country.
Julian Dow steps down and John Terblanche joins the JEB team
-NewEditor.png?versionId=3747)
After 15 years with the journal, Julian Dow from University of Glasgow, UK, is stepping down as a Monitoring Editor. We wish Julian all the best for the future and welcome John Terblanche, Stellenbosch University, South Africa, who is joining the team. Julian talks about his long association with The Company of Biologists and the journal and John tells us about his life and career in this News article.
The capture of crude oil droplets by filter feeders at high and low Reynolds numbers
-FilterFeeders.jpg?versionId=3747)
Researchers from the University of Montreal, Canada, reveal how tiny filter feeding barnacles and Daphnia entrap and consume minute droplets of crude oil, introducing the pollutant at the bottom of the food chain.
Patterns and processes in amphibious fish
-Review.png?versionId=3747)
In their Review, Keegan Lutek, Cassandra Donatelli and Emily Standen discuss the biomechanics and neural control of terrestrial locomotion in amphibious fish. They explore how locomotor mode depends on body shape, physical constraints and phylogeny.