Agonistic muscles lose approximately 20% of their individual torque generating capacity when activated with their agonistic muscles compared to when stimulated in isolation. In this study, we (i) tested if this loss in torque was accompanied by a corresponding loss in force, thereby testing the potential role of changes in moment arms between conditions; (ii) removed all inter-muscular connections between the quadriceps muscles, thus determining the potential role of inter-muscular force transmission; and (iii) systematically changed the inter-muscular pressure by performing experiments at different activation/force levels, thereby exploring the possible role of inter-muscular pressure in the loss of torque capacity with simultaneous muscle activation. Experiments were performed in a New Zealand White rabbit quadriceps model (n=5). Torque and force were measured during activation of femoral nerve branches that supply the individual quadriceps muscles while activating these branches simultaneously and in isolation. Regardless of joint angle and inter-muscular connections between muscles, the differences in torque values between the simultaneous and the isolated activation of the quadriceps muscles were also observed for the directly measured force values. Mean differences in simultaneous and isolated muscle activation remained similar between the intact and separated conditions: torque difference (21±5% of maximum isometric torque of intact condition [MICtorque], versus 19±6% MICtorque respectively) and for force (18±3% MICforce versus 19±7% MICforce respectively). The absolute torque loss was independent of the force, and thus presumably the inter-muscular pressures. Based on these results, we conclude that neither moment arm, inter-muscular pressure nor inter-muscular force transmission seems to be the primary cause for the torque deficit observed during simultaneous compared to isolated muscle activation. The mechanisms underlying loss of force capacity during agonistic muscle contraction remain unknown.

This content is only available via PDF.

Article PDF first page preview

Article PDF first page preview