Subterranean digging behaviors provide opportunities for protection, access to prey, and predator avoidance for a diverse array of vertebrates, yet studies of the biomechanics of burrowing have been limited by the technical challenges of measuring kinetics and kinematics of animals moving within a medium. We describe a new system called a ‘tunnel-tube’ for measuring 3D reaction forces during burrowing, which is composed of two, separately instrumented plastic tubes — an ‘entry tube’ with no medium in series with a ‘digging tube’ filled with medium. Mean reaction forces are measured for a digging bout and Fourier analysis is used to quantify the amplitude of oscillatory digging force as a function of frequency. In sample data from pocket gophers digging in artificial and natural media, the mean ground reaction force is constant, whereas Fourier analysis resolves a reduced amplitude of oscillatory force in the artificial medium with lower compaction strength.

This content is only available via PDF.

Article PDF first page preview

Article PDF first page preview

Supplementary information