We report measurements of ion transport across the gastric caecum of larvae of Aedes aegypti, a vector of yellow fever that inhabits a variety of aquatic habitats ranging from freshwater to brackish water. We provide the first measurements of the effect of 5-hydroxytryptamine (5-HT) on transepithelial potential (TEP), luminal ion concentrations and electrochemical potentials, as well as basolateral membrane potential and H+, Na+ and K+ fluxes. TEP, basolateral membrane potential, and H+, K+, and Na+ fluxes across the gastric caeca declined within 3-6 mins after isolation of the entire midgut from the larva. 5-HT restored both the TEP and active accumulation of H+, K+, and Na+ in the lumen. Additionally, 5-HT restored H+, K+, and Na+ fluxes across the distal caecum of freshwater larvae, and restored H+ fluxes across the distal caecum of brackish water larvae. There was no effect of 5-HT on ion fluxes across the proximal caecum. We have also shown that 5-HT restores the basolateral membrane potential in cells of the distal, but not proximal, caecum. Effects of 5-HT on TEP and basolateral membrane potential were mimicked by application of cAMP but not by a phorbol ester. We provide a working model which proposes that 5-HT and cAMP stimulate the vacuolar H+-ATPase of the distal caecum. Our results provide evidence that the gastric caecum is functionally distinct from the adjacent anterior midgut and we discuss possible roles of the gastric caecum in osmoregulation. We also describe similarities in the arrangement of ion transporters in the caecum with those of the Malpighian tubules.

This content is only available via PDF.

Article PDF first page preview

Article PDF first page preview

Supplementary information