An important question related to survival of dehydrating animals is whether feeding provides a net gain of water — contributing postprandial free water and metabolic water — or, alternatively, whether digestion and assimilation of ingested food incur a net loss of water because of requirements for digestion and the excretion of resulting metabolic wastes. Here I address the question whether voluntary drinking increases or decreases following the ingestion of food. Increased postprandial drinking implies that food consumption increases rather than decreases the requirement for free water, whereas decreased postprandial drinking suggests there is a net profit of water from food. Snakes are ideally suited for such inquiry because they feed intermittently, and the temporal separation of meals allows relatively clear examination of the associated patterns of pre- and postprandial drinking. Voluntary drinking associated with meal consumption was quantified during consecutive feeding trials in four species representing two families of snakes. Postprandial relative to preprandial drinking increased in all four species, indicating that eating increases the physiological requirement for water. These data add to a growing literature pointing to some generality that eating can have negative rather than positive consequences for fluid homeostasis in some dehydrating animals.
Feeding begets drinking: insights from intermittent feeding in snakes
Currently Viewing Accepted Manuscript - Newer Version Available
- Split-screen
- Views Icon Views
- Open the PDF for in another window
-
Article Versions Icon
Versions
- Version of Record 01 October 2017
- Accepted Manuscript 01 January 2017
- Share Icon Share
-
Tools Icon
Tools
- Search Site
Harvey B. Lillywhite; Feeding begets drinking: insights from intermittent feeding in snakes. J Exp Biol 2017; jeb.163725. doi: https://doi.org/10.1242/jeb.163725
Download citation file:
Advertisement
Meet the JEB Editors @ SEB 2023

Come and meet the JEB team at the Society for Experimental Biology centenary conference from 4-7 July in Edinburgh, UK. Visit exhibition stand 13/15 to pick up JEB centenary goodies, including our new ‘100 years of discovery’ T shirt, and join our Meet the JEB Editors event on Thursday 6 July at 12.30 at Platform 5 to find out more about the journal and chat to Editors including EiC Craig Franklin, Monitoring Editors Sanjay Sane, Trish Schulte and John Terblanche and the in-house News and Reviews team.
New funding schemes for junior faculty staff

In celebration of our 100th anniversary, JEB has launched two new grants to support junior faculty staff working in animal comparative physiology and biomechanics who are within five years of setting up their first lab/research group. Check out our ECR Visiting Fellowships and Research Partnership Kickstart Travel Grants. First deadline for applications is 15 July 2023.
JEB@100: an interview with Monitoring Editor Katie Gilmour

Katie Gilmour tells us how she first encountered the JEB Editorial team as a graduate student at the University of Cambridge, UK, and how she would like to have a Star Trek tricorder to monitor fish non-invasively in the field.
The Forest of Biologists

The Forest of Biologists is a biodiversity initiative created by The Company of Biologists, with support from the Woodland Trust. For every Research and Review article published in Journal of Experimental Biology a native tree is planted in a UK forest. In addition to this we are protecting and restoring ancient woodland and are dedicating these trees to our peer reviewers. Visit our virtual forest to learn more.
Centenary Review - Adaptive echolocation behavior

Cynthia F. Moss and colleagues Review the behaviours used by echolocating mammals to track and intercept moving prey, interrogate dynamic sonar scenes, and exploit visual and passive acoustic stimuli.
Crucial DNA at crux of insect wing size evolution
Keity Farfán-Pira and colleagues have revealed that a tiny region of regulatory DNA in the vestigial gene governs whether insect wings are large or small and has played a key role in the evolution of insect wing size.