Rhythmic contractions of the mammalian gastrointestinal tract can occur in the absence of neuronal or hormonal stimulation due to the generation of spontaneous electrical activity by interstitial cells of Cajal (ICC) that are electrically coupled to smooth muscle cells. The myogenically-driven component of gastrointestinal motility patterns in fish likely also involves ICC, however, little is known of their presence, distribution and function in any fish species. In the present study, we combined immunohistochemistry and in vivo recordings of intestinal motility to investigate the involvement of ICC in the motility of the proximal intestine in adult shorthorn sculpin (Myoxocephalus scorpius). Antibodies against anoctamin 1 (Ano1, a Ca2+-activated Cl channel), revealed a dense network of multipolar, repeatedly branching cells in the myenteric region of the proximal intestine, similar in many regards to the mammalian ICC-MY network. The addition of benzbromarone, a potent blocker of Ano1, altered the motility patterns seen in vivo after neural blockade with TTX. The results indicate that ICC are integral for the generation and propagation of the majority of rhythmic contractile patterns in fish, although their frequency and amplitude can be modulated via neural activity.

This content is only available via PDF.

Article PDF first page preview

Article PDF first page preview

Supplementary information