The polarization of light provides information that is used by many animals for a number of different visually guided behaviours. Several marine species, such as stomatopod crustaceans and cephalopod molluscs, communicate using visual signals that contain polarized information, content that is often part of a more complex multi-dimensional visual signal. In this work, we investigate the evolution of polarized signals in species of Haptosquilla, a widespread genus of stomatopod, as well as related protosquillids. We present evidence for a pre-existing bias towards horizontally polarized signal content and demonstrate that the properties of the polarization vision system in these animals increase the signal-to-noise ratio of the signal. Combining these results with the increase in efficacy that polarization provides over intensity and hue in a shallow marine environment, we propose a joint framework for the evolution of the polarized form of these complex signals based on both efficacy-driven (proximate) and content-driven (ultimate) selection pressures.

This content is only available via PDF.

Article PDF first page preview

Article PDF first page preview