Facial vibrissae, or whiskers, are found in nearly all extant mammal species and are likely to have been present in early mammalian ancestors. A sub-set of modern mammals, including many rodents, move their vibrissae back-and-forth at high speed whilst exploring in a behaviour known as "whisking". It is not known whether the vibrissae of early mammals moved in this way. The gray short-tailed opossum, Monodelphis domestica, is considered a useful species from the perspective of tracing the evolution of modern mammals. Interestingly, these marsupials engage in whisking bouts similar to those seen in rodents. To better assess the likelihood that active vibrissal sensing was present in ancestral mammals we examined the vibrissal musculature of the opossum using digital miscroscopy to see if this resembles that of rodents.
Although opossums have fewer whiskers than rats, our investigation found that the vibrissal musculature is similar in both species. In particular, in both rats and opossums, the musculature includes both intrinsic and extrinsic muscles with the intrinsic muscles positioned as slings linking pairs of large vibrissae within rows. We identified some differences in the extrinsic musculature which, interestingly, matched with behavioural data obtained through high-speed video recording, and indicated additional degrees of freedom for positioning the vibrissae in rats. These data show that the whisker movements of opossum and rat exploit similar underlying mechanisms. Paired with earlier results suggesting similar patterns of vibrissal movement, this strongly implies that early therian (marsupial and placental) mammals were whisking animals that actively controlled their vibrissae.

This content is only available via PDF.

Article PDF first page preview

Article PDF first page preview