1. The effects of altering sensory input on the motoneuronal activity underlying antennular flicking have been tested. 2. Removal of the short segments of the outer flagellum results in a reduction of the number of spikes/burst in the fast flexor motoneurones A31F and A32F. 3. During a flick the delay between the burst in motoneurone A31F and the burst in motoneurone A32F is insensitive to alteration of sensory input. 4. Sensory feedback from the flexion phase of a flick is necessary for the activation of either extensor motoneurone. Evidence is presented to suggest that this feedback is primarily from joint-movement receptors at the MS-DS and DS-OF joints. 5. The results are incorporated into a model in which the patterns of flexor activity result from some specified properties of three components: a trigger system, a follower system, and the spike initiating zone of the flexor motoneurones. The trigger system determines when a flick will occur. The follower system determines the number of flexor spikes during a flick. Properties of the spike initiating zone determine the spike frequency and the timing between bursts in the flexor motoneurones. Extensor activity in the model is reflexively elicited by feedback from phasic, unidirectional receptors sensitive to joint flexion. 6. The functional significance of reflex control of extensor activity is discussed in relation to the form and proposed function of antennular flicking. It is suggested that this form of control is adapted to the function of antennular flicking because flexion at the MS-DS joint is not always necessary for the fulfilment of the fuction of a flick.

This content is only available via PDF.