1. Decrement of the lateral giant fibre escape response was studied in intact, restrained, crayfish and in those with the ventral nerve cord transected at the thoracic-abdominal level. 2. Taps (delivered at rates of 1 per 5 min to the abdomen) depressed responsiveness to about 50% of its inital value in 10 trials, for both intact and operated animals. 3. With additional stimulation, responsiveness dropped to near zero for both groups. Recovery was negligible 2 h later, but nearly complete after an additional 24 h rest. 4. Protection against response decrement in this situation was obtained by directly activating the cord giant fibres 30 msec prior to the tactile stimulus. The directly-elicited giant fibre spikes which follow the tactile stimulus do not influence the course of response decrement. 5. The results establish the decrement as centrally mediated habituation, and minimize the role of receptor alterations or descending neuronal influences in the behavioural change. 6. A comparison is made between the properties of hibituation and the homosynaptic depression of afferent to interneurone synapses that is presumed to be the physiological mechanism of habituation in this situation.

This content is only available via PDF.