Joints enable nearly all vertebrate animal motion, from feeding to locomotion. However, despite well over a century of arthrological research, we still understand very little about how the structure of joints relates to the kinematics they exhibit in life. This Commentary discusses the value of joint mobility as a lens through which to study articular form and function. By independently exploring form–mobility and mobility–function relationships and integrating the insights gained, we can develop a deep understanding of the strength and causality of articular form–function relationships. In turn, we will better illuminate the basics of ‘how joints work’ and be well positioned to tackle comparative investigations of the diverse repertoire of vertebrate animal motion.

Slithering, sprinting, swimming, soaring – virtually all vertebrate animal motion relies on the joints that hold our skeletons together. As a result, vertebrate biologists have long investigated articular form (e.g. Bland-Sutton, 1897; Haines, 1942a,b; Hamrick, 1996a,b; Nowroozi et al., 2012; Parsons, 1899; Tsai and Holliday, 2015; Bailleul et al., 2017) and its development (e.g. Archer et al., 2003; Haines, 1947; Roddy et al., 2009) and articular function (e.g. Dial et al., 1991; Herbst et al., 2022a; Moon, 1999; Tsai et al., 2020) and its evolution (e.g. Aguilar et al., 2022; Bhullar et al., 2019; Brainerd and Patek, 1998; Cieri et al., 2020; Gridder-Porter and Rummel, 2022; Holliday and Witmer, 2008; Jenkins, 1973; Wilken et al., 2020). These endeavors are well chronicled in the past century of issues of the Journal of Experimental Biology (e.g. Anderson, 1993; Barclay, 1946; Brocklehurst et al., 2017; Brown, 1948; Congdon et al., 2012; Dawson et al., 2011; Fischer et al., 2002; Gál, 1993a,b; Gray, 1944; Handschuh et al., 2019; Herrel et al., 1999, 2000; Hutson and Hutson, 2012, 2013; Iijima et al., 2021; Jurestovsky et al., 2020; Kambic et al., 2014, 2015; Kargo et al., 2002; Konow and Bellwood, 2005; Lin et al., 2019; Long et al., 1997; Manter, 1938; Menegaz et al., 2015; Miyashita et al., 2020; Molnar et al., 2014; Oliver et al., 2016; Ravosa et al., 2007; Rubenson et al., 2007; Smith and Hylander, 1985; Werth and Ito, 2020; Wilga and Motta, 1998; Wilken et al., 2019).

However, despite such efforts, we still have a remarkably limited understanding of ‘how joints work’ at a fundamental level. Disentangling biological form and function is well known to be inherently challenging (Bock and von Wahlert, 1965; Gans, 1988; Koehl, 1996; Lauder, 1981; 1995; Russell, 1916; Vizcaíno and Bargo, 2021), making it unclear how much we can reasonably infer, for example, about the in vivo kinematics of joints from their structure. But determining the extent to which such inference is feasible is central to further advancing innumerable pursuits in organismal biology – from explaining the anatomical basis of adaptations, to attributing functional diversity to differences in morphology versus behavioral plasticity, to anticipating how animals will move and migrate through risky and ever-changing environments.

Here, I discuss the value of studying joint mobility – the set of all configurations that a joint can passively assume – in illuminating articular form–function relationships. I propose that joint mobility enables us to break down these relationships into two more tractable components (Fig. 1): (1) how specific differences in morphology correlate with differences in potential motion (the form–mobility relationship), and (2) how differences in potential motion correlate with differences in observed motion (the mobility–function relationship). In doing so, it bridges an otherwise insurmountable gap between static form and dynamic function, facilitating comparative biomechanical studies of extant and extinct vertebrates alike.

Fig. 1.

Joint mobility allows us to break down the investigation of complicated articular form–function relationships (dashed line) into more tractable studies of form–mobility and mobility–function relationships (solid lines).

Fig. 1.

Joint mobility allows us to break down the investigation of complicated articular form–function relationships (dashed line) into more tractable studies of form–mobility and mobility–function relationships (solid lines).

Joints must create mobility between skeletal elements while maintaining enough stability to remain articulated. Too stable and they cannot move, too mobile and they fall apart. Over the past 500 million years of vertebrate evolution (Askary et al., 2016; Haines, 1942a), this balancing act has generated an extraordinary diversity of sizes and shapes of articular surfaces, arrangements of soft tissues that bind them, and motions prevented or permitted. Therefore, when exploring the form–mobility relationship, we have tandem objectives – to ask how articular structures prevent motion, and to take on the opposite perspective and ask how they allow it.

We can make progress towards these goals by teasing apart how different articular structures such as ligaments, cartilage, muscle and bone interact to shape mobility. Computational analyses of joint mobility offer opportunities to visualize how interactions between bony surfaces prevent certain joint configurations, formalize and test our assumptions about what characteristics of articulation make a joint configuration possible in life, and even experimentally modify morphology and assess the influence of introducing or eliminating structures (e.g. Brocklehurst et al., 2022; Demuth et al., 2020; Hammond et al., 2016; Herbst et al., 2022b; Jones et al., 2021; Fahn-Lai et al., 2018; Mallison, 2010a,b; Manafzadeh and Gatesy, 2021; Lee et al., 2018; Molnar et al., 2021; Nyakatura et al., 2015; Pierce et al., 2012; Regnault and Pierce, 2018; Richards et al., 2021; Wiseman et al., 2022; for a review, see Manafzadeh and Gatesy, 2022). To investigate the constraints imposed by articular soft tissues, we can supplement virtual analyses with laboratory measurements of mobility from intact (e.g. Akhbari et al., 2019; Hammond, 2014; Hammond et al., 2017; Manafzadeh, 2020; Manafzadeh et al., 2021) and serially dissected joints (e.g. Arnold et al., 2014; Cobley et al., 2013; Crisco et al., 1991; Hutson and Hutson, 2012, 2013, 2014, 2015a,b, 2018; Kambic et al., 2017a,b; Herbst et al., 2022c; Manafzadeh and Padian, 2018; Martin et al., 2008), bearing in mind the concomitant loss of physiological realism when reducing them to subsets of their parts.

Once measurements of mobility are gathered and related to morphology within individual joints, we can also view these data within the context of entire organisms and evaluate how anatomical connections between or among joints – another aspect of their form – may create coordinated, dynamic changes in mobility during life. Whereas posturally driven differences in the mobilities of joints linked by biarticular muscles may be relatively simple to characterize (e.g. Nonaka et al., 2002; Okada et al., 1996), those among joints contributing to complex multi-bar systems (e.g. Bhullar et al., 2016; Holliday and Witmer, 2008; Lemberg et al., 2021; Olsen et al., 2017) will require more involved, network-based consideration (see Olsen, 2019). As the relationship between form and mobility becomes clearer, analyzing our findings within a comparative framework will empower us to develop a mechanistic, predictive and broadly transferable understanding of how differences in joint anatomy directly cause differences in potential motion.

The study of mobility–function relationships can be thought of, in some ways, as similar to that of ecological niche occupation (see Hutchinson, 1957; Vandermeer, 1972). Whereas joints have access to a large set of potential configurations prescribed by their morphology (analogous to a fundamental niche), they exploit only a small subset of these during any given behavior (analogous to a realized niche). By comparing mobility measurements with corresponding in vivo kinematic trajectories, we can begin to map out what subset of full potential motion is used during different behaviors. We can then ask how consistent this pattern is and what factors drive it – much as an ecologist might ask how variables such as predation and competition drive species distributions.

Because joints use interacting combinations of rotations in life (see Haering et al., 2014; Kambic et al., 2017a), analyses of mobility–function relationships will be most biologically meaningful when conducted with three or more degrees of freedom. Biplanar videoradiography studies [e.g. X-ray Reconstruction of Moving Morphology (XROMM) analyses; Brainerd et al., 2010; Gatesy et al., 2010] have led biomechanists to amass a wealth of six-degree-of-freedom in vivo kinematics from joints across the vertebrate tree (e.g. Bhullar et al., 2019; Brocklehurst et al., 2017; Cieri et al., 2020; Kambic et al., 2014; Lin et al., 2019; Maharaj et al., 2020; Menegaz et al., 2015; Miranda et al., 2013; Olsen et al., 2017), but because XROMM-based range of motion analysis is laborious and not yet amenable to automation (see Laurence-Chasen et al., 2020), comparably detailed mobility data for these joints remain scarce. That said, the few analyses conducted thus far (Herbst et al., 2022a; Kambic et al., 2017a; Manafzadeh et al., 2021) demonstrate feasibility and lay a foundation for future comparison with additional joints and taxa.

As we build up associated mobility and in vivo kinematic data for a broad variety of joints, we will be able to answer not only what subset of mobility is exploited in life, but also why this is the case. We can enhance our future datasets by integrating them with data collected about functional parameters such as joint stiffness (e.g. Johns and Wright, 1962; Jones et al., 2021; Herbst et al., 2022c; Molnar et al., 2014) or articular contact area (e.g. Ateshian et al., 1995; Bey et al., 2009; Jenkins and Camazine, 1977; Marai et al., 2004), augmenting our knowledge of each joint pose beyond a binary ‘possible’ or ‘impossible’. We will thus be better equipped to tackle questions such as what characteristics of articulation must be maintained during specific behaviors, or when joint motion is passively guided versus actively modulated. Ultimately, this work will reveal to what extent neuromuscular control is truly a concerning ‘wildcard’ (see Lauder, 1995) confounding our ability to reliably relate articular form and function.

If we can predict potential motion from joint form, and we can predict which subset of that motion will be used during a given behavior, then it follows that we should be able to synthesize our findings to successfully predict observed kinematics directly from the structure of joints – perhaps one day even rendering our mobility-based ‘bridge’ (Fig. 1) obsolete. As we work towards this goal, we – the next century of comparative biomechanists – are faced with an incredibly exciting opportunity to not only draw correlations among form, mobility and function, but also to deeply and explicitly understand the strength and causality of these relationships. By striving to do so, we hold unprecedented potential to elucidate the enigmatic principles that underlie ‘how joints work’ – and in turn, to tackle future biomechanical analyses with an improved fundamental understanding of vertebrate animal motion.

I thank Stephen Gatesy for years of discussions that have shaped my views about how to study joints, Tyler Kartzinel for kindly lending the phrase ‘move and migrate through risky and ever-changing environments’, countless arthrologically inclined colleagues for their feedback on my work to date, the organizers of the Comparative Biomechanics Special Issue for the invitation to contribute this Commentary, and three anonymous reviewers for their constructive criticism.

Funding

The author was supported by a Gaylord Donnelley Postdoctoral Environmental Fellowship from the Yale Institute for Biospheric Studies.

Aguilar
,
L. K.
,
Collins
,
C. E.
,
Ward
,
C. V.
and
Hammond
,
A. S.
(
2022
).
Pathways to primate hip function
.
R. Soc. Open Sci.
9
,
211762
.
Akhbari
,
B.
,
Morton
,
A. M.
,
Moore
,
D. C.
,
Weiss
,
A. P. C.
,
Wolfe
,
S. W.
and
Crisco
,
J. J.
(
2019
).
Accuracy of biplane videoradiography for quantifying dynamic wrist kinematics
.
J. Biomech.
92
,
120
-
125
.
Anderson
,
C. W.
(
1993
).
The modulation of feeding behavior in response to prey type in the frog Rana pipiens
.
J. Exp. Biol.
179
,
1
-
12
.
Archer
,
C. W.
,
Dowthwaite
,
G. P.
and
Francis-West
,
P.
(
2003
).
Development of synovial joints
.
Birth Defects Res.
69
,
144
-
155
.
Arnold
,
P.
,
Fischer
,
M. S.
and
Nyakatura
,
J. A.
(
2014
).
Soft tissue influence on ex vivo mobility in the hip of Iguana: comparison with in vivo movement and its bearing on joint motion of fossil sprawling tetrapods
.
J. Anat.
225
,
31
-
41
.
Askary
,
A.
,
Smeeton
,
J.
,
Paul
,
S.
,
Schindler
,
S.
,
Braasch
,
I.
,
Ellis
,
N. A.
,
Postlethwait
,
J.
,
Miller
,
C.
and
Crump
,
J. G.
(
2016
).
Ancient origin of lubricated joints in bony vertebrates
.
Elife
5
,
e16415
.
Ateshian
,
G. A.
,
Ark
,
J. W.
,
Rosenwasser
,
M. P.
,
Pawluk
,
R. J.
,
Soslowsky
,
L. J.
and
Mow
,
V. C.
(
1995
).
Contact areas in the thumb carpometacarpal joint
.
J. Orthop. Res.
13
,
450
-
458
.
Bailleul
,
A. M.
,
Witmer
,
L. M.
and
Holliday
,
C. M.
(
2017
).
Cranial joint histology in the mallard duck (Anas platyrhynchos): new insights on avian cranial kinesis
.
J. Anat.
230
,
444
-
460
.
Barclay
,
O. R.
(
1946
).
The mechanics of amphibian locomotion
.
J. Exp. Biol.
23
,
177
-
203
.
Bey
,
M. J.
,
Kline
,
S. K.
,
Zauel
,
R.
,
Kolowich
,
P. A.
and
Lock
,
T. R.
(
2009
).
In vivo measurement of glenohumeral joint contact patterns
.
EURASIP J. Adv. Signal Process.
2010
,
162136
.
Bhullar
,
B. A. S.
,
Hanson
,
M.
,
Fabbri
,
M.
,
Pritchard
,
A.
,
Bever
,
G. S.
and
Hoffman
,
E.
(
2016
).
How to make a bird skull: major transitions in the evolution of the avian cranium, paedomorphosis, and the beak as a surrogate hand
.
Integr. Comp. Biol.
56
,
389
-
403
.
Bhullar
,
B. A. S.
,
Manafzadeh
,
A. R.
,
Miyamae
,
J. A.
,
Hoffman
,
E. A.
,
Brainerd
,
E. L.
,
Musinsky
,
C.
and
Crompton
,
A. W.
(
2019
).
Rolling of the jaw is essential for mammalian chewing and tribosphenic molar function
.
Nature
566
,
528
-
532
.
Bland-Sutton
,
J.
(
1897
).
Ligaments; Their Nature and Morphology
.
Lewis
.
Bock
,
W. J.
and
Von Wahlert
,
G.
(
1965
).
Adaptation and the form-function complex
.
Evolution
19
,
269
-
299
.
Brainerd
,
E. L.
and
Patek
,
S. N.
(
1998
).
Vertebral column morphology, C-start curvature, and the evolution of mechanical defenses in tetraodontiform fishes
.
Copeia
1998
,
971
-
984
.
Brainerd
,
E. L.
,
Baier
,
D. B.
,
Gatesy
,
S. M.
,
Hedrick
,
T. L.
,
Metzger
,
K. A.
,
Gilbert
,
S. L.
and
Crisco
,
J. J.
(
2010
).
X-ray reconstruction of moving morphology (XROMM): precision, accuracy and applications in comparative biomechanics research
.
J. Exp. Zool. A: Ecol. Genet. Physiol.
313
,
262
-
279
.
Brocklehurst
,
R. J.
,
Moritz
,
S.
,
Codd
,
J.
,
Sellers
,
W. I.
and
Brainerd
,
E. L.
(
2017
).
Rib kinematics during lung ventilation in the American alligator (Alligator mississippiensis): an XROMM analysis
.
J. Exp. Biol.
220
,
3181
-
3190
.
Brocklehurst
,
R. J.
,
Fahn-Lai
,
P.
,
Regnault
,
S.
and
Pierce
,
S. E.
(
2022
).
Musculoskeletal modeling of sprawling and parasagittal forelimbs provides insight into synapsid postural transition
.
iScience
25
,
103578
.
Brown
,
R. H. J.
(
1948
).
The flight of birds: the flapping cycle of the pigeon
.
J. Exp. Biol.
25
,
322
-
333
.
Cieri
,
R. L.
,
Hatch
,
S. T.
,
Capano
,
J. G.
and
Brainerd
,
E. L.
(
2020
).
Locomotor rib kinematics in two species of lizards and a new hypothesis for the evolution of aspiration breathing in amniotes
.
Sci. Rep.
10
,
7739
.
Cobley
,
M. J.
,
Rayfield
,
E. J.
and
Barrett
,
P. M.
(
2013
).
Inter-vertebral flexibility of the ostrich neck: implications for estimating sauropod neck flexibility
.
PLoS One
8
,
e72187
.
Congdon
,
K. A.
,
Hammond
,
A. S.
and
Ravosa
,
M. J.
(
2012
).
Differential limb loading in miniature pigs (Sus scrofa domesticus): a test of chondral modeling theory
.
J. Exp. Biol.
215
,
1472
-
1483
.
Crisco
,
J. J.
,
Oda
,
T.
,
Panjabi
,
M. M.
,
Bueff
,
H. U.
,
Dvorak
,
J.
and
Grob
,
D.
(
1991
).
Transections of the C1-C2 joint capsular ligaments in the cadaveric spine
.
Spine
16
,
S474
-
S479
.
Dawson
,
M. M.
,
Metzger
,
K. A.
,
Baier
,
D. B.
and
Brainerd
,
E. L.
(
2011
).
Kinematics of the quadrate bone during feeding in mallard ducks
.
J. Exp. Biol.
214
,
2036
-
2046
.
Demuth
,
O. E.
,
Rayfield
,
E. J.
and
Hutchinson
,
J. R.
(
2020
).
3D hindlimb joint mobility of the stem-archosaur Euparkeria capensis with implications for postural evolution within Archosauria
.
Sci. Rep.
10
,
15357
.
Dial
,
K. P.
,
Goslow
,
G. E.
Jr.
and
Jenkins
,
F. A.
Jr.
(
1991
).
The functional anatomy of the shoulder in the European starling (Sturnus vulgaris)
.
J. Morphol.
207
,
327
-
344
.
Fahn-Lai
,
P.
,
Biewener
,
A. A.
and
Pierce
,
S. E.
(
2018
).
Three-dimensional mobility and muscle attachments in the pectoral limb of the Triassic cynodont Massetognathus pascuali (Romer, 1967)
.
J. Anat.
232
,
383
-
406
.
Fischer
,
M. S.
,
Schilling
,
N.
,
Schmidt
,
M.
,
Haarhaus
,
D.
and
Witte
,
H.
(
2002
).
Basic limb kinematics of small therian mammals
.
J. Exp. Biol.
205
,
1315
-
1338
.
Gál
,
J. M.
(
1993a
).
Mammalian spinal biomechanics. I. Static and dynamic mechanical properties of intact intervertebral joints
.
J. Exp. Biol.
174
,
247
-
280
.
Gál
,
J. M.
(
1993b
).
Mammalian spinal biomechanics. II. Intervertebral lesion experiments and mechanisms of bending resistance
.
J. Exp. Biol.
174
,
281
-
297
.
Gans
,
C.
(
1988
).
Adaptation and the form-function relation
.
Am. Zool.
28
,
681
-
697
.
Gatesy
,
S. M.
,
Baier
,
D. B.
,
Jenkins
,
F. A.
and
Dial
,
K. P.
(
2010
).
Scientific rotoscoping: a morphology-based method of 3-D motion analysis and visualization
.
J. Exp. Zool. A Ecol. Genet. Physiol.
313
,
244
-
261
.
Gray
,
J.
(
1944
).
Studies in the mechanics of the tetrapod skeleton
.
J. Exp. Biol.
20
,
88
-
116
.
Gridder-Porter
,
N.
and
Rummel
,
A.
(
2022
).
Dietary influences on head and neck ranges of motion in neotropical bats
.
J. Zool.
318
,
193
-
204
.
Haering
,
D.
,
Raison
,
M.
and
Begon
,
M.
(
2014
).
Measurement and description of three-dimensional shoulder range of motion with degrees of freedom interactions
.
J. Biomech. Eng.
136
,
084502
.
Haines
,
R. W.
(
1942a
).
Eudiarthrodial joints in fishes
.
J. Anat.
77
,
12
.
Haines
,
R. W.
(
1942b
).
The tetrapod knee joint
.
J. Anat.
76
,
270
.
Haines
,
R. W.
(
1947
).
The development of joints
.
J. Anat.
81
,
33
.
Hammond
,
A. S.
(
2014
).
In vivo baseline measurements of hip joint range of motion in suspensory and nonsuspensory anthropoids
.
Am. J. Phys. Anthropol.
153
,
417
-
434
.
Hammond
,
A. S.
,
Plavcan
,
J. M.
and
Ward
,
C. V.
(
2016
).
A validated method for modeling anthropoid hip abduction in silico
.
Am. J. Phys. Anthropol.
160
,
529
-
548
.
Hammond
,
A. S.
,
Johnson
,
V. P.
and
Higham
,
J. P.
(
2017
).
Hip joint mobility in free-ranging rhesus macaques
.
Am. J. Phys. Anthropol.
162
,
377
-
384
.
Hamrick
,
M. W.
(
1996a
).
Functional morphology of the lemuriform wrist joints and the relationship between wrist morphology and positional behavior in arboreal primates
.
Am. J. Phys. Anthropol.
99
,
319
-
344
.
Hamrick
,
M. W.
(
1996b
).
Articular size and curvature as determinants of carpal joint mobility and stability in strepsirhine primates
.
J. Morphol.
230
,
113
-
127
.
Handschuh
,
S.
,
Natchev
,
N.
,
Kummer
,
S.
,
Beisser
,
C. J.
,
Lemell
,
P.
,
Herrel
,
A.
and
Vergilov
,
V.
(
2019
).
Cranial kinesis in the miniaturised lizard Ablepharus kitaibelii (Squamata: Scincidae)
.
J. Exp. Biol.
222
,
jeb198291
.
Herbst
,
E. C.
,
Eberhard
,
E. A.
,
Richards
,
C. T.
and
Hutchinson
,
J. R.
(
2022a
).
In vivo and ex vivo range of motion in the fire salamander Salamandra salamandra
.
J. Anat.
241
,
1066
-
1082
.
Herbst
,
E. C.
,
Manafzadeh
,
A. R.
and
Hutchinson
,
J. R.
(
2022b
).
Multi-joint analysis of pose viability supports the possibility of salamander-like hindlimb configurations in the Permian tetrapod Eryops megacephalus
.
Integr. Comp. Biol.
62
,
139
-
151
.
Herbst
,
E. C.
,
Eberhard
,
E. A.
,
Hutchinson
,
J. R.
and
Richards
,
C. T.
(
2022c
).
Spherical frame projections for visualising joint range of motion, and a complementary method to capture mobility data
.
J. Anat.
241
,
1054
-
1065
.
Herrel
,
A.
,
De Vree
,
F.
,
Delheusy
,
V.
and
Gans
,
C.
(
1999
).
Cranial kinesis in gekkonid lizards
.
J. Exp. Biol.
202
,
3687
-
3698
.
Herrel
,
A.
,
Aerts
,
P.
and
De Vree
,
F.
(
2000
).
Cranial kinesis in geckoes: functional implications
.
J. Exp. Biol.
203
,
1415
-
1423
.
Holliday
,
C. M.
and
Witmer
,
L. M.
(
2008
).
Cranial kinesis in dinosaurs: intracranial joints, protractor muscles, and their significance for cranial evolution and function in diapsids
.
J. Vertebr. Paleontol.
28
,
1073
-
1088
.
Hutchinson
,
G. E.
(
1957
).
Concluding remarks. Population studies: animal ecology and demography
.
Cold Spring Harb. Symp. Quant. Biol.
22
,
415
-
427
.
Hutson
,
J. D.
and
Hutson
,
K. N.
(
2012
).
A test of the validity of range of motion studies of fossil archosaur elbow mobility using repeated-measures analysis and the extant phylogenetic bracket
.
J. Exp. Biol.
215
,
2030
-
2038
.
Hutson
,
J. D.
and
Hutson
,
K. N.
(
2013
).
Using the American alligator and a repeated-measures design to place constraints on in vivo shoulder joint range of motion in dinosaurs and other fossil archosaurs
.
J. Exp. Biol.
216
,
275
-
284
.
Hutson
,
J. D.
and
Hutson
,
K. N.
(
2014
).
A repeated-measures analysis of the effects of soft tissues on wrist range of motion in the extant phylogenetic bracket of dinosaurs: implications for the functional origins of an automatic wrist folding mechanism in Crocodilia
.
Anat. Rec.
297
,
1228
-
1249
.
Hutson
,
J. D.
and
Hutson
,
K. N.
(
2015a
).
Inferring the prevalence and function of finger hyperextension in Archosauria from finger-joint range of motion in the American alligator
.
J. Zool.
296
,
189
-
199
.
Hutson
,
J. D.
and
Hutson
,
K. N.
(
2015b
).
An examination of forearm bone mobility in Alligator mississippiensis (Daudin, 1802) and Struthio camelus Linnaeus, 1758 reveals that Archaeopteryx and dromaeosaurs shared an adaptation for gliding and/or flapping
.
Geodiversitas
37
,
325
-
344
.
Hutson
,
J. D.
and
Hutson
,
K. N.
(
2018
).
Retention of the flight-adapted avian finger-joint complex in the ostrich helps identify when wings began evolving in dinosaurs
.
Ostrich
89
,
173
-
186
.
Iijima
,
M.
,
Munteanu
,
V. D.
,
Elsey
,
R. M.
and
Blob
,
R. W.
(
2021
).
Ontogenetic changes in limb posture, kinematics, forces and joint moments in American alligators (Alligator mississippiensis)
.
J. Exp. Biol.
224
,
jeb242990
.
Jenkins
,
F. A.
Jr.
(
1973
).
The functional anatomy and evolution of the mammalian humero-ulnar articulation
.
Am. J. Anat.
137
,
281
-
297
.
Jenkins
,
F. A.
and
Camazine
,
S. M.
(
1977
).
Hip structure and locomotion in ambulatory and cursorial carnivores
.
J. Zool.
181
,
351
-
370
.
Johns
,
R. J.
and
Wright
,
V.
(
1962
).
Relative importance of various tissues in joint stiffness
.
J. Appl. Physiol.
17
,
824
-
828
.
Jones
,
K. E.
,
Dickson
,
B. V.
,
Angielczyk
,
K. D.
and
Pierce
,
S. E.
(
2021
).
Adaptive landscapes challenge the “lateral-to-sagittal” paradigm for mammalian vertebral evolution
.
Curr. Biol.
31
,
1883
-
1892.e7
.
Jurestovsky
,
D. J.
,
Jayne
,
B. C.
and
Astley
,
H. C.
(
2020
).
Experimental modification of morphology reveals the effects of the zygosphene–zygantrum joint on the range of motion of snake vertebrae
.
J. Exp. Biol.
223
,
jeb216531
.
Kambic
,
R. E.
,
Roberts
,
T. J.
and
Gatesy
,
S. M.
(
2014
).
Long-axis rotation: a missing degree of freedom in avian bipedal locomotion
.
J. Exp. Biol.
217
,
2770
-
2782
.
Kambic
,
R. E.
,
Roberts
,
T. J.
and
Gatesy
,
S. M.
(
2015
).
Guineafowl with a twist: asymmetric limb control in steady bipedal locomotion
.
J. Exp. Biol.
218
,
3836
-
3844
.
Kambic
,
R. E.
,
Roberts
,
T. J.
and
Gatesy
,
S. M.
(
2017a
).
3-D range of motion envelopes reveal interacting degrees of freedom in avian hind limb joints
.
J. Anat.
231
,
906
-
920
.
Kambic
,
R. E.
,
Biewener
,
A. A.
and
Pierce
,
S. E.
(
2017b
).
Experimental determination of three-dimensional cervical joint mobility in the avian neck
.
Front. Zool.
14
,
37
.
Kargo
,
W. J.
,
Nelson
,
F.
and
Rome
,
L. C.
(
2002
).
Jumping in frogs: assessing the design of the skeletal system by anatomically realistic modeling and forward dynamic simulation
.
J. Exp. Biol.
205
,
1683
-
1702
.
Koehl
,
M. A. R.
(
1996
).
When does morphology matter?
Annu. Rev. Ecol. Syst.
27
,
501
-
542
.
Konow
,
N.
and
Bellwood
,
D. R.
(
2005
).
Prey-capture in Pomacanthus semicirculatus (Teleostei, Pomacanthidae): functional implications of intramandibular joints in marine angelfishes
.
J. Exp. Biol.
208
,
1421
-
1433
.
Lauder
,
G. V.
(
1981
).
Form and function: structural analysis in evolutionary morphology
.
Paleobiology
7
,
430
-
442
.
Lauder
,
G. V.
(
1995
).
On the inference of function from structure
. In:
Functional Morphology in Vertebrate Paleontology (ed. J. Thomason)
, pp.
1
-
18
.
Cambridge University Press
.
Laurence-Chasen
,
J. D.
,
Manafzadeh
,
A. R.
,
Hatsopoulos
,
N. G.
,
Ross
,
C. F.
and
Arce-Mcshane
,
F. I.
(
2020
).
Integrating XMALab and DeepLabCut for high-throughput XROMM
.
J. Exp. Biol.
223
,
jeb226720
.
Lee
,
E.
,
Clouthier
,
A.
,
Bicknell
,
R.
,
Bey
,
M. J.
,
Roach
,
N. T.
,
Young
,
N. M.
and
Rainbow
,
M. J.
(
2018
).
In silico modeling of glenohumeral joint variation in biomechanical function and stability
.
Am. J. Phys. Anthropol.
165
,
155
.
Lemberg
,
J. B.
,
Daeschler
,
E. B.
and
Shubin
,
N. H.
(
2021
).
The feeding system of Tiktaalik roseae: an intermediate between suction feeding and biting
.
Proc. Natl. Acad. Sci. USA
118
,
e2016421118
.
Lin
,
Y.-F.
,
Konow
,
N.
and
Dumont
,
E. R.
(
2019
).
How moles destroy your lawn: the forelimb kinematics of eastern moles in loose and compact substrates
.
J. Exp. Biol.
222
,
jeb182436
.
Long
,
J. H.
Jr.
,
Pabst
,
D. A.
,
Shepherd
,
W. R.
and
Mclellan
,
W. A.
(
1997
).
Locomotor design of dolphin vertebral columns: bending mechanics and morphology of Delphinus delphis
.
J. Exp. Biol.
200
,
65
-
81
.
Maharaj
,
J. N.
,
Kessler
,
S.
,
Rainbow
,
M. J.
,
D'andrea
,
S. E.
,
Konow
,
N.
,
Kelly
,
L. A.
and
Lichtwark
,
G. A.
(
2020
).
The reliability of foot and ankle bone and joint kinematics measured with biplanar videoradiography and manual scientific rotoscoping
.
Front. Bioeng. Biotechnol.
8
,
106
.
Mallison
,
H.
(
2010a
).
CAD assessment of the posture and range of motion of Kentrosaurus aethiopicus Hennig 1915
.
Swiss J. Geosci.
103
,
211
-
233
.
Mallison
,
H.
(
2010b
).
The digital Plateosaurus II: an assessment of the range of motion of the limbs and vertebral column and of previous reconstructions using a digital skeletal mount
.
Acta Palaeontol. Pol.
55
,
433
-
458
.
Manafzadeh
,
A. R.
(
2020
).
A practical guide to measuring ex vivo joint mobility using XROMM
.
Integr. Org. Biol.
2
,
obaa041
.
Manafzadeh
,
A. R.
and
Gatesy
,
S. M.
(
2021
).
Paleobiological reconstructions of articular function require all six degrees of freedom
.
J. Anat.
239
,
1516
-
1524
.
Manafzadeh
,
A. R.
and
Gatesy
,
S. M.
(
2022
).
Advances and challenges in paleobiological reconstructions of joint mobility
.
Integr. Comp. Biol
. 62, 1369-1376.
Manafzadeh
,
A. R.
and
Padian
,
K.
(
2018
).
ROM mapping of ligamentous constraints on avian hip mobility: implications for extinct ornithodirans
.
Proc. R. Soc. B
285
,
20180727
.
Manafzadeh
,
A. R.
,
Kambic
,
R. E.
and
Gatesy
,
S. M.
(
2021
).
A new role for joint mobility in reconstructing vertebrate locomotor evolution
.
Proc. Natl. Acad. Sci. USA
118
,
e2023513118
.
Manter
,
J. T.
(
1938
).
The dynamics of quadrupedal walking
.
J. Exp. Biol.
15
,
522
-
540
.
Marai
,
G. E.
,
Laidlaw
,
D. H.
,
Demiralp
,
C.
,
Andrews
,
S.
,
Grimm
,
C. M.
and
Crisco
,
J. J.
(
2004
).
Estimating joint contact areas and ligament lengths from bone kinematics and surfaces
.
IEEE Trans. Biomed. Eng.
51
,
790
-
799
.
Martin
,
H. D.
,
Savage
,
A.
,
Braly
,
B. A.
,
Palmer
,
I. J.
,
Beall
,
D. P.
and
Kelly
,
B.
(
2008
).
The function of the hip capsular ligaments: a quantitative report
.
Arthroscopy
24
,
188
-
195
.
Menegaz
,
R. A.
,
Baier
,
D. B.
,
Metzger
,
K. A.
,
Herring
,
S. W.
and
Brainerd
,
E. L.
(
2015
).
XROMM analysis of tooth occlusion and temporomandibular joint kinematics during feeding in juvenile miniature pigs
.
J. Exp. Biol.
218
,
2573
-
2584
.
Miranda
,
D. L.
,
Rainbow
,
M. J.
,
Crisco
,
J. J.
and
Fleming
,
B. C.
(
2013
).
Kinematic differences between optical motion capture and biplanar videoradiography during a jump-cut maneuver
.
J. Biomech.
46
,
567
-
573
.
Miyashita
,
T.
,
Baddam
,
P.
,
Smeeton
,
J.
,
Oel
,
A. P.
,
Natarajan
,
N.
,
Gordon
,
B.
,
Palmer
,
A. R.
,
Crump
,
J. G.
,
Graf
,
D.
and
Allison
,
W. T.
(
2020
).
nkx3.2 mutant zebrafish accommodate jaw joint loss through a phenocopy of the head shapes of Paleozoic jawless fish
.
J. Exp. Biol.
223
,
jeb216945
.
Molnar
,
J. L.
,
Pierce
,
S. E.
and
Hutchinson
,
J. R.
(
2014
).
An experimental and morphometric test of the relationship between vertebral morphology and joint stiffness in Nile crocodiles (Crocodylus niloticus)
.
J. Exp. Biol.
217
,
758
-
768
.
Molnar
,
J. L.
,
Hutchinson
,
J. R.
,
Diogo
,
R.
,
Clack
,
J. A.
and
Pierce
,
S. E.
(
2021
).
Evolution of forelimb musculoskeletal function across the fish-to-tetrapod transition
.
Sci. Adv.
7
,
eabd7457
.
Moon
,
B. R.
(
1999
).
Testing an inference of function from structure: snake vertebrae do the twist
.
J. Morphol.
241
,
217
-
225
.
Nonaka
,
H.
,
Mita
,
K.
,
Watakabe
,
M.
,
Akataki
,
K.
,
Suzuki
,
N.
,
Okuwa
,
T.
and
Yabe
,
K.
(
2002
).
Age-related changes in the interactive mobility of the hip and knee joints: a geometrical analysis
.
Gait Posture
15
,
236
-
243
.
Nowroozi
,
B. N.
,
Harper
,
C. J.
,
De Kegel
,
B.
,
Adriaens
,
D.
and
Brainerd
,
E. L.
(
2012
).
Regional variation in morphology of vertebral centra and intervertebral joints in striped bass, Morone saxatilis
.
J. Morphol.
273
,
441
-
452
.
Nyakatura
,
J. A.
,
Allen
,
V. R.
,
Lauströer
,
J.
,
Andikfar
,
A.
,
Danczak
,
M.
,
Ullrich
,
H. J.
and
Fischer
,
M. S.
,
Martens
,
T.
and
Fischer
,
M. S.
and (
2015
).
A three-dimensional skeletal reconstruction of the stem amniote Orobates pabsti (Diadectidae): analyses of body mass, centre of mass position, and joint mobility
.
PLoS One
10
,
e0137284
.
Okada
,
M.
,
Morimoto
,
M.
and
Kiimira
,
T.
(
1996
).
Mobility of hindlimb joints in Japanese macaques (Macaca fuscata) as influenced by biarticular musculature
.
Folia Primatol.
66
,
181
-
191
.
Oliver
,
J. D.
,
Jones
,
K. E.
,
Hautier
,
L.
,
Loughry
,
W. J.
and
Pierce
,
S. E.
(
2016
).
Vertebral bending mechanics and xenarthrous morphology in the nine-banded armadillo (Dasypus novemcinctus)
.
J. Exp. Biol.
219
,
2991
-
3002
.
Olsen
,
A. M.
(
2019
).
A mobility-based classification of closed kinematic chains in biomechanics and implications for motor control
.
J. Exp. Biol.
222
,
jeb195735
.
Olsen
,
A. M.
,
Camp
,
A. L.
and
Brainerd
,
E. L.
(
2017
).
The opercular mouth-opening mechanism of largemouth bass functions as a 3D four-bar linkage with three degrees of freedom
.
J. Exp. Biol.
220
,
4612
-
4623
.
Parsons
,
F. G.
(
1899
).
The joints of mammals compared with those of man: a course of lectures delivered at the Royal College of Surgeons of England
.
J. Anat. Physiol.
34
,
41
.
Pierce
,
S. E.
,
Clack
,
J. A.
and
Hutchinson
,
J. R.
(
2012
).
Three-dimensional limb joint mobility in the early tetrapod Ichthyostega
.
Nature
486
,
523
-
526
.
Ravosa
,
M. J.
,
Kunwar
,
R.
,
Stock
,
S. R.
and
Stack
,
M. S.
(
2007
).
Pushing the limit: masticatory stress and adaptive plasticity in mammalian craniomandibular joints
.
J. Exp. Biol.
210
,
628
-
641
.
Regnault
,
S.
and
Pierce
,
S. E.
(
2018
).
Pectoral girdle and forelimb musculoskeletal function in the echidna (Tachyglossus aculeatus): insights into mammalian locomotor evolution
.
R. Soc. Open Sci.
5
,
181400
.
Richards
,
H. L.
,
Bishop
,
P. J.
,
Hocking
,
D. P.
,
Adams
,
J. W.
and
Evans
,
A. R.
(
2021
).
Low elbow mobility indicates unique forelimb posture and function in a giant extinct marsupial
.
J. Anat.
238
,
1425
-
1441
.
Roddy
,
K. A.
,
Nowlan
,
N. C.
,
Prendergast
,
P. J.
and
Murphy
,
P.
(
2009
).
3D representation of the developing chick knee joint: a novel approach integrating multiple components
.
J. Anat.
214
,
374
-
387
.
Rubenson
,
J.
,
Lloyd
,
D. G.
,
Besier
,
T. F.
,
Heliams
,
D. B.
and
Fournier
,
P. A.
(
2007
).
Running in ostriches (Struthio camelus): three-dimensional joint axes alignment and joint kinematics
.
J. Exp. Biol.
210
,
2548
-
2562
.
Russell
,
E. S.
(
1916
).
Form and Function: A Contribution to the History of Animal Morphology
.
University of Glasgow
.
Smith
,
K. K.
and
Hylander
,
W. L.
(
1985
).
Strain gauge measurement of mesokinetic movement in the lizard Varanus exanthematicus
.
J. Exp. Biol.
114
,
53
-
70
.
Tsai
,
H. P.
and
Holliday
,
C. M.
(
2015
).
Articular soft tissue anatomy of the archosaur hip joint: structural homology and functional implications
.
J. Morphol.
276
,
601
-
630
.
Tsai
,
H. P.
,
Turner
,
M. L.
,
Manafzadeh
,
A. R.
and
Gatesy
,
S. M.
(
2020
).
Contrast-enhanced XROMM reveals in vivo soft tissue interactions in the hip of Alligator mississippiensis
.
J. Anat.
236
,
288
-
304
.
Vandermeer
,
J. H.
(
1972
).
Niche theory
.
Annu. Rev. Ecol. Syst.
3
,
107
-
132
.
Vizcaíno
,
S. F.
and
Bargo
,
M. S.
(
2021
).
Views on the form-function correlation and biological design
.
J. Mamm. Evol.
28
,
15
-
22
.
Werth
,
A. J.
and
Ito
,
H.
(
2020
).
Whale jaw joint is a shock absorber
.
J. Exp. Biol.
223
,
jeb211904
.
Wilga
,
C. D.
and
Motta
,
P. J.
(
1998
).
Feeding mechanism of the Atlantic guitarfish Rhinobatos lentiginosus: modulation of kinematic and motor activity
.
J. Exp. Biol.
201
,
3167
-
3183
.
Wilken
,
A. T.
,
Middleton
,
K. M.
,
Sellers
,
K. C.
,
Cost
,
I. N.
and
Holliday
,
C. M.
(
2019
).
The roles of joint tissues and jaw muscles in palatal biomechanics of the savannah monitor (Varanus exanthematicus) and their significance for cranial kinesis
.
J. Exp. Biol.
222
,
jeb201459
.
Wilken
,
A.
,
Sellers
,
K.
,
Cost
,
I.
,
Rozin
,
R.
,
Middleton
,
K.
and
Holliday
,
C.
(
2020
).
Connecting the chondrocranium: biomechanics of the suspensorium in reptiles
.
Vertebr. Zool.
70
,
275
-
290
.
Wiseman
,
A. L.
,
Demuth
,
O. E.
,
Pomeroy
,
E.
and
De Groote
,
I.
(
2022
).
Reconstructing articular cartilage in the Australopithecus afarensis hip joint and the need for modeling six degrees of freedom
.
Integr. Org. Biol.
4
,
obac031
.

Competing interests

The author declares no competing or financial interests.