To understand the neural mechanisms of reproductive behaviour in the male cricket, we identified motor neurones innervating the muscles in each genital organ by backfilling with cobalt/nickel and recording their extracellular spike activity from nerve bundles of the terminal abdominal ganglion during tethered copulation and spermatophore formation. During tethered copulation, at least two motor neurones innervating two ipsilateral muscles were activated during projection of the guiding rod of the phallic dorsal pouch. Only one motor neurone, innervating four ipsilateral muscles of the dorsal pouch, was responsible for spermatophore extrusion by deforming the dorsal pouch. For spermatophore transfer, three motor neurones, singly innervating three epiphallus muscles, played a major role in opening passages for haemolymph to enter the ventral lobes and median pouch by bending the epiphallus. Two ventral lobe and 3–5 median pouch motor neurones seemed to play a role in expanding or folding the two membranous structures by relaxing or contracting their muscle fibres. After spermatophore transfer, most of the genital motor neurones exhibited a rhythmic burst of action potentials causing movement of the phallic complex coupled with strong abdominal contractions. For spermatophore formation, the genital motor neurones began to accelerate their rhythmic bursts approximately 30 s prior to subgenital plate opening and then changed their activity to tonic bursting or silence. The results have allowed us to describe the timing of the onset and termination of genital muscle contraction more precisely than before, to examine the neural mechanisms of copulatory motor control and to speculate on the neural organization of the reproductive centre for spermatophore extrusion and protrusion.
Reproductive behaviour in the male cricket Gryllus bimaculatus DeGeer. II. Neural control of the genitalia
M. Kumashiro, M. Sakai; Reproductive behaviour in the male cricket Gryllus bimaculatus DeGeer. II. Neural control of the genitalia. J Exp Biol 15 March 2001; 204 (6): 1139–1152. doi: https://doi.org/10.1242/jeb.204.6.1139
Download citation file:
Advertisement
Cited by
Celebrating 100 years of discovery

We are proud to be celebrating 100 years of discovery in Journal of Experimental Biology. Visit our centenary webpage to find out more about how we are marking this historic milestone.
Craig Franklin launches our centenary celebrations

Editor-in-Chief Craig Franklin reflects on 100 years of JEB and looks forward to our centenary celebrations, including a supplementary special issue, a new early-career researcher interview series and the launch of our latest funding initiatives.
Looking back on the first issue of JEB

Journal of Experimental Biology launched in 1923 as The British Journal of Experimental Biology. As we celebrate our centenary, we look back at that first issue and the zoologists publishing their work in the new journal.
Webinar: Increasing the visibility and impact of your research
-HUBSwebinar.jpg?versionId=4510)
Would you like to increase the visibility and impact of your research and raise your profile internationally? If so, register for the very practical webinar we are running in association with HUBS on 23 February 2023.
Biology Communication Workshop: Engaging the world in the excitement of research
-BioCommunicationWorkshop.png?versionId=4510)
We are delighted to be sponsoring a Biology Communication Workshop for early-career researchers as part of JEB’s centenary celebrations. The workshop focuses on how to effectively communicate your science to other researchers and the public and takes place the day before the CSZ annual meeting, on 14 May 2023. Find out more and apply here.
Mexican fruit flies wave for distraction

Dinesh Rao and colleagues have discovered that Mexican fruit flies vanish in a blur in the eyes of predatory spiders when they wave their wings at the arachnids, buying the flies time to make their escape.