Transition metals are essential for many metabolic processes, and their homeostasis is crucial for life. Metal-ion transporters play a major role in maintaining the correct concentrations of the various metal ions in living cells. Little is known about the transport mechanism of metal ions by eukaryotic cells. Some insight has been gained from studies of the mammalian transporter DCT1 and the yeast transporter Smf1p by following the uptake of various metal ions and from electrophysiological experiments using Xenopus laevis oocytes injected with RNA copies (c-RNA) of the genes for these transporters. Both transporters catalyze the proton-dependent uptake of divalent cations accompanied by a ‘slippage’ phenomenon of different monovalent cations unique to each transporter. Here, we further characterize the transport activity of DCT1 and Smf1p, their substrate specificity and their transport properties. We observed that Zn(2+) is not transported through the membrane of Xenopus laevis oocytes by either transporter, even though it inhibits the transport of the other metal ions and enables protons to ‘slip’ through the DCT1 transporter. A special construct (Smf1p-s) was made to enhance Smf1p activity in oocytes to enable electrophysiological studies of Smf1p-s-expressing cells. 54Mn(2+) uptake by Smf1p-s was measured at various holding potentials. In the absence of Na(+) and at pH 5.5, metal-ion uptake was not affected by changes in negative holding potentials. Elevating the pH of the medium to 6.5 caused metal-ion uptake to be influenced by the holding potential: ion uptake increased when the potential was lowered. Na(+) inhibited metal-ion uptake in accordance with the elevation of the holding potential. A novel clutch mechanism of ion slippage that operates via continuously variable stoichiometry between the driving-force pathway (H(+)) and the transport pathway (divalent metal ions) is proposed. The possible physiological advantages of proton slippage through DCT1 and of Na(+) slippage through Smf1p are discussed.

Chen
X.-Z.
,
Peng
J.-B.
,
Cohen
A.
,
Nelson
H.
,
Nelson
N.
,
Hediger
M. A.
(
1999
).
Yeast SMF1 mediates H-coupled iron uptake with concomitant uncoupled cation currents.
J. Biol. Chem
274
,
35089
–.
Chen
X.-Z.
,
Shayakul
C.
,
Berger
U. V.
,
Tian
W.
,
Hediger
M. A.
(
1998
).
Characterization of a rat Na+—dicarboxylate cotransporter.
J. Biol. Chem
273
,
20972
–.
Cohen
A.
,
Nelson
H.
,
Nelson
N.
(
2000
).
The family of SMF metal-ion transporters in yeast cells.
J. Biol. Chem
275
,
33388
–.
DeFelice
L. J.
,
Blakely
R. D.
(
1996
).
Pore models for transporters?.
Biophys. J
70
,
579
–.
Dix
D. R.
,
Bridgham
J. T.
,
Broderius
M. A.
,
Byersdorfer
C. A.
,
Eide
D. J.
(
1994
).
The FET4 gene encodes the low affinity Fe(II) transport protein of Saccharomyces cerevisiae.
J. Biol. Chem
269
,
26092
–.
Fleming
M. D.
,
Trenor
C. C.
III
,
Su
M. A.
,
Foernzler
D.
,
Beier
D. R.
,
Dietrich
W. F.
,
Andrews
N. C.
(
1997
).
Microcytic anaemia mice have a mutation in Nramp2, a candidate iron transporter gene.
Nature Genet
16
,
383
–.
Gunshin
H.
,
Mackenzie
B.
,
Berger
U. V.
,
Gunshin
Y.
,
Romero
M. F.
,
Boron
W. F.
,
Nussberger
S.
,
Gollan
J. L.
,
Hediger
M. A.
(
1997
).
Cloning and characterization of a mammalian proton-coupled metal-ion transporter.
Nature
388
,
482
–.
Handy
R. D.
,
Musonda
M. M.
,
Phillips
C.
,
Falla
S. J.
(
2000
).
Mechanisms of gastrointestinal copper absorption in the African walking catfish: copper dose-effects and a novel anion-dependent pathway in the intestine.
J. Exp. Biol
203
,
2365
–.
Hediger
M. A.
(
1997
).
Membrane permeability. The diversity of transmembrane transport processes.
Curr. Opin. Cell Biol
9
,
543
–.
Kavanaugh
M. P.
(
1998
).
Neurotransmitter transport: models in flux.
Proc. Natl. Acad. Sci. USA
95
,
12737
–.
Liu
Q.-R.
,
Lopez-Corcuera
B.
,
Mandiyan
S.
,
Nelson
H.
,
Nelson
N.
(
1993
).
Molecular characterization of four pharmacologically distinct-aminobutyric acid transporters in mouse brain.
J. Biol. Chem
268
,
2106
–.
Liu
X. F.
,
Culotta
V. C.
(
1999
).
Post-translation control of Nramp metal transport in yeast. Role of metal ions and the BSD2 gene.
J. Biol. Chem
274
,
4863
–.
Liu
X. F.
,
Supek
F.
,
Nelson
N.
,
Culotta
V. C.
(
1997
).
Negative control of heavy metal uptake by the Saccharomyces cerevisiae BSD2 gene.
J. Biol. Chem
272
,
11763
–.
Loo
D. D.
,
Hazama
A.
,
Supplisson
S.
,
Turk
E.
,
Wright
E. M.
(
1993
).
Relaxation kinetics of the Na+/glucose cotransporter.
Proc. Natl. Acad. Sci. USA
90
,
5767
–.
Loo
D. D.
,
Hirayama
B. A.
,
Gallardo
E. M.
,
Lam
J. T.
,
Turk
E.
,
Wright
E. M.
(
1998
).
Conformational changes couple Na+and glucose transport.
Proc. Natl. Acad. Sci. USA
95
,
7789
–.
Mager
S.
,
Min
C.
,
Henry
D. J.
,
Chavkin
C.
,
Hoffman
B. J.
,
Davidson
N.
,
Lester
H. A.
(
1994
).
Conducting states of a mammalian serotonin transporter.
Neuron
12
,
845
–.
Mitchell
P.
(
1968
).
Chemiosmotic Coupling and Energy Transduction
.
Bodmin, UK
.
Mitchell
P.
,
Moyle
J.
(
1967
).
Chemiosmotic hypothesis of oxidative phosphorylation.
Nature
213
,
137
139
.
Nelson
N.
(
1999
).
Metal-ion transporters and homeostasis.
EMBO J
18
,
4361
–.
Radisky
D. C.
,
Kaplan
J.
(
1999
).
Regulation of transition metal transport across the yeast plasma membrane.
J. Biol. Chem
274
,
4481
–.
Supek
F.
,
Supekova
L.
,
Nelson
H.
,
Nelson
N.
(
1996
).
A yeast manganese transporter related to the macrophage protein involved in conferring resistance to mycobacteria.
Proc. Natl. Acad. Sci. USA
93
,
5105
–.
Supek
F.
,
Supekova
L.
,
Nelson
H.
,
Nelson
N.
(
1997
).
Function of metal-ion homeostasis in cell division cycle, mitochondrial protein processing, sensitivity to mycobacterial infection and brain functions.
J. Exp. Biol
200
,
321
–.
Tandy
S.
,
Williams
M.
,
Leggett
A.
,
Lopez-Jimenez
M.
,
Dedes
M.
,
Ramesh
B.
,
Srai
S. K.
,
Sharp
P.
(
2000
).
Nramp2 expression is associated with pH-dependent iron uptake across the apical membrane of human intestinal Caco-2 cells.
J. Biol. Chem
275
,
1023
–.
Wright
E. M.
,
Loo
D. D.
,
Panayotova-Heiermann
M.
,
Lostao
M. P.
,
Hirayama
B. H.
,
Mackenzie
B.
,
Boorer
K.
,
Zampighi
G.
(
1994
).
‘Active’ sugar transport in eukaryotes.
J. Exp. Biol
196
,
197
–.
This content is only available via PDF.