The analysis of perfusion parameters using the frame-to-frame technique and the observation of small blood vessels in transparent animals using video microscopy can be tedious and very difficult because of the poor contrast of the images. Injection of a fluorescent probe (fluorescein isothiocynate, FITC) bound to a high-molecular-mass dextran improved the visibility of blood vessels, but the gray-scale histogram showed blurring at the edges of the vessels. Furthermore, injection of the fluorescent probe into the ventricle of small zebrafish (Danio rerio) embryos (body mass approximately 1 mg) often resulted in reduced cardiac activity. Digital motion analysis, however, proved to be a very effective tool for analysing the shape and performance of the circulatory system in transparent animals and tissues. By subtracting the two fields of a video frame (the odd and the even frame), any movement that occurred within the 20 ms necessary for the acquisition of one field could be visualised. The length of the shifting vector generated by this subtraction, represented a direct measure of the velocity of a moving particle, i.e. an erythrocyte in the vascular system. By accumulating shifting vectors generated from several consecutive video frames, a complete trace of the routes over which erythrocytes moved could be obtained. Thus, a cast of the vascular system, except for those tiny vessels that are not entered by erythrocytes, could be obtained. Because the gray-scale value of any given pixel or any given group of pixels increased with the number of erythrocytes passing it, digital motion analysis could also be used to visualise the distribution of blood cells in transparent tissues. This method was used to describe the development of the peripheral vascular system in zebrafish larvae up to 8 days post-fertilisation. At this stage, food intake resulted in a clear redistribution of blood between muscle tissue and the gut, and alpha-adrenergic control of peripheral blood flow was established.

Colmorgen
M.
,
Paul
R. J.
(
1995
).
Imaging of physiological functions in transparent animals (Agonus cataphractus, Daphnia magna, Pholcus phalangioides) by video microscopy and digital image processing
.
Comp. Biochem. Physiol
111
,
583
–.
Faber
J. J.
,
Green
T. J.
,
Thornburg
K. L.
(
1974
).
Embryonic stroke volume and cardiac output in the chick
.
Dev. Biol
41
,
14
–.
Fagrell
B.
,
Fronek
A.
,
Intaglietta
M.
(
1977
).
A microscope—television system for studying flow velocity in human skin capillaries
.
Am. J. Physiol
233
,
318
–.
Farrell
A. P.
,
Sobin
S. S.
,
Randall
D. J.
,
Crosby
S.
(
1980
).
Intralamellar blood flow patterns in fish gills
.
Am. J. Physiol
239
,
428
–.
Feder
M. E.
,
Booth
D. T.
(
1992
).
Hypoxic boundary layers surrounding skin-breathing aquatic amphibians: occurrence, consequences and organismal responses
.
J. Exp. Biol
166
,
237
–.
Fritsche
R.
,
Burggren
W. W.
(
1996
).
Development of cardiovascular responses to hypoxia in larvae of the frog Xenopus laevis
.
Am. J. Physiol
271
,
912
–.
Hanger
C. C.
,
Hillier
S. C.
,
Presson
R. G. J.
,
Glenny
R. W.
,
Wagner
W. W. J.
(
1995
).
Measuring pulmonary microvessel diameters using video image analysis
.
J. Appl. Physiol
79
,
526
–.
Hou
P. C. L.
,
Burggren
W. W.
(
1995
).
Cardiac output and peripheral resistance during larval development in the anuran amphibian Xenopus laevis
.
Am. J. Physiol
269
,
1126
–.
Hudetz
A. G.
(
1997
).
Blood flow in the cerebral capillary network: A review emphasizing observations with intravital microscopy
.
Microcirculation
4
,
233
–.
Hughes
G. M.
,
Horimoto
M.
,
Kikuchi
Y.
,
Kakiuchi
Y.
,
Koyama
T.
(
1981
).
Blood-flow velocity in microvessels of the gill filaments of the goldfish (Carassius auratus L.)
.
J. Exp. Biol
90
,
327
–.
Keller
B. B.
,
MacLennan
M. J.
,
Tinney
J. P.
,
Yoshigi
M.
(
1996
).
In vivo assessment of embryonic cardiovascular dimensions and function in day-10.5 to-14.5 mouse embryos
.
Circ. Res
79
,
247
–.
Koyama
T.
,
Mishina
H.
,
Asakura
T.
(
1975
).
A study ofmicrocirculation in web of frog (Xenopus laevis Daudin) by using laser Doppler microscope
.
Experientia
31
,
1420
–.
MacFarlane
T. W.
,
Petrowski
S.
,
Rigutto
L.
,
Roach
M. R.
(
1983
).
Computer-based video analysis of cerebral arterial geometry using the natural fluorescence of the arterial wall and contrast enhancement techniques
.
Blood Vessels
20
,
161
–.
Nilsson
G.E.
,
Löfman
C.O.
,
Block
M.
(
1995
).
Extensive erythrocyte deformation in fish gills observed by in vivo microscopy: apparent adaptations for enhancing oxygen uptake
.
J. Exp. Biol
198
,
1151
–.
Pelster
B.
(
1994
).
Adrenergic control of swimbladder perfusion in the European eel Anguilla anguilla
.
J. Exp. Biol
189
,
237
–.
Pelster
B.
,
Bemis
W. E.
(
1992
).
Structure and function of the external gill filaments of embryonic skates (Raja erinacea)
.
Respir. Physiol
89
,
1
–.
Pinder
A. W.
,
Feder
M. E.
(
1990
).
Effect of boundary layers on cutaneous gas exchange
.
J. Exp. Biol
143
,
67
–.
Schwerte
T.
,
Axelsson
M.
,
Nilsson
S.
,
Pelster
B.
(
1997
).
Effects of vagal stimulation on swimbladder blood flow in the European eel Anguilla anguilla
.
J. Exp. Biol
200
,
3133
–.
Stensløkken
K.-O.
,
Sundin
L.
,
Nilsson
G. E.
(
1999
).
Cardiovascular and gill microcirculatory effects of endothelin-1 in Atlantic cod: evidence for pillar cell contraction
.
J. Exp. Biol
200
,
1151
–.
Stucker
M.
,
Baier
V.
,
Reuther
T.
,
Hoffmann
K.
,
Kellam
K.
,
Altmeyer
P.
(
1996
).
Capillary blood cell velocity in human skin capillaries located perpendicularly to the skin surface: measured by a new laser Doppler anemometer
.
Microvasc. Res
52
,
188
–.
Sundin
L.
(
1995
).
Serotonergic vasomotor control in fish gills
.
Braz. J. Med. Biol. Res
28
,
1217
–.
Sundin
L.
,
Nilsson
G. E.
(
1997
).
Neurochemical mechanisms behind gill microcirculatory responses to hypoxia in trout: in vivo microscopy study
.
Am. J. Physiol
272
,
576
–.
Vesely
I.
,
Menkis
A.
,
Campbell
G.
(
1990
).
A computerized system for video analysis of the aortic valve
.
IEEE Trans. Biomed. Eng
37
,
925
–.
Weinstein
B. M.
,
Schier
A. F.
,
Abdelilah
S.
,
Malicki
J.
,
Solnica-Krezel
L.
,
Stemple
D. L.
,
Stainier
D. Y. R.
,
Zwartkruis
F.
,
Driever
W.
,
Fishman
M. C.
(
1996
).
Hematopoietic mutations in the zebrafish
.
Development
123
,
303
–.
This content is only available via PDF.