Symbioses between chemoautotrophic bacteria and marine invertebrates living at deep-sea hydrothermal vents and other sulfide-rich environments function autotrophically by oxidizing hydrogen sulfide as an energy source and fixing carbon dioxide into organic compounds. For chemoautotrophy to support growth, these symbioses must be capable of inorganic nitrogen assimilation, a process that is not well understood in these or other aquatic symbioses. Pathways of inorganic nitrogen assimilation were investigated in several of these symbioses: the vent tubeworms Riftia pachyptila and Tevnia jerichonana, the vent bivalves Calyptogena magnifica and Bathymodiolus thermophilus, and the coastal bivalve Solemya velum. Nitrate reductase activity was detected in R. pachyptila, T. jerichonana and B. thermophilus, but not in C. magnifica and S. velum. This is evidence for nitrate utilization, either assimilation or respiration, by some vent species and is consistent with the high levels of nitrate availability at vents. The ammonia assimilation enzymes glutamine synthetase (GS) and glutamate dehydrogenase (GDH) were detected in all symbioses tested, indicating that ammonia resulting from nitrate reduction or from environmental uptake can be incorporated into amino acids. A complicating factor is that GS and GDH are potentially of both host and symbiont origin, making it unclear which partner is involved in assimilation. GS, which is considered to be the primary ammonia-assimilating enzyme of autotrophs, was investigated further. Using a combination of molecular and biochemical approaches, host and symbiont GS were distinguished in the intact association. On the basis of Southern hybridizations, immunoreactivity, subunit size and thermal stability, symbiont GS was found to be a prokaryote GS. Host GS was distinct from prokaryote GS. The activities of host and symbiont GS were separated by anion-exchange chromatography and quantified. Virtually all activity in symbiont-containing tissue was due to symbiont GS in R. pachyptila, C. magnifica and B. thermophilus. In contrast, no symbiont GS activity was detected in the gill of S. velum, the predominant activity in this species appearing to be host GS. These findings suggest that ammonia is primarily assimilated by the symbionts in vent symbioses, whereas in S. velum ammonia is first assimilated by the host. The relationship between varying patterns of GS expression and host-symbiont nutritional exchange is discussed.

Bender
R. A.
,
Janssen
K. A.
,
Resnick
A. D.
,
Blumenberg
M.
,
Foor
F.
,
Magasanik
B.
(
1977
).
Biochemical parameters of glutamine synthetase from Klebsiellaaerogenes
.
J. Bacteriol
129
,
1001
–.
Boss
K. J.
,
Turner
R. D.
(
1980
).
The giant white clam from the Galapagos Rift, Calyptogena magnifica species novum
.
Malacologia
20
,
161
–.
Brown
J. R.
,
Masuchi
Y.
,
Robb
F. T.
,
Doolittle
W. F.
(
1994
).
Evolutionary relationships of bacterial and archaeal glutamine synthetase genes
.
J. Mol. Evol
38
,
566
–.
Carlson
T. A.
,
Chelm
B. K.
(
1986
).
Apparent eukaryotic origin of glutamine synthetase II from Bradyrhizobiumjaponicum
.
Nature
322
,
568
–.
Cavanaugh
C. M.
(
1994
).
Microbial symbiosis: patterns of diversity in the marine environment
.
Am. Zool
34
,
79
–.
Darrow
R. A.
,
Knotts
R. R.
(
1977
).
Two forms of glutamine synthetase in free-living root-nodule bacteria
.
Biochem. Biophys. Res. Commun
78
,
554
–.
Felbeck
H.
,
Somero
G. N.
,
Childress
J. J.
(
1981
).
Calvin—Benson cycle sulphide oxidation enzymes in animals from sulphide rich habitats
.
Nature
293
,
291
–.
Fisher
M. T.
(
1994
).
The effect of groES on the groEL-dependent assembly of dodecameric glutamine synthetase in the presence of ATP and ADP
.
J. Biol. Chem
269
,
13629
–.
Gates
R. D.
,
Hoegh-Guldberg
O.
,
McFall-Ngai
M. J.
,
Bil
K. Y.
,
Muscatine
L.
(
1995
).
Free amino acids exhibit anthozoan ‘host factor’ activity: They induce the release of photosynthate from symbiotic dinoflagellates invitro
.
Proc. Natl. Acad. Sci. USA
92
,
7430
–.
Hand
S. C.
(
1987
).
Trophosome ultrastructure and the characterization of isolated bacteriocytes from invertebrate—sulfur bacteria symbioses
.
Biol. Bull
173
,
260
–.
Hentschel
U.
,
Felbeck
H.
(
1993
).
Nitrate respiration in the hydrothermal vent tubeworm Riftiapachyptila
.
Nature
366
,
338
–.
Hochstein
L. I.
,
Tomlinson
G. A.
(
1988
).
The enzymes associated with denitrification
.
Annu. Rev. Microbiol
42
,
231
–.
Kleinschuster
S. J.
,
Morris
J. E.
(
1972
).
Glutamine synthetase, an enzyme characteristic of vertebrate systems in invertebrate tissues
.
Experientia
28
,
1157
–.
Kumada
Y.
,
Takano
E.
,
Nagaoka
K.
,
Thompson
C. J.
(
1990
).
Streptomyceshygroscopicus has two glutamine synthetase genes
.
J. Bacteriol
172
,
5343
–.
Lee
R. W.
,
Childress
J. J.
(
1994
).
Assimilation of inorganic nitrogen by chemoautotrophic and methanotrophic symbioses
.
Appl. Env. Microbiol
60
,
1852
–.
Lee
R. W.
,
Childress
J. J.
(
1996
).
Inorganic N assimilation and ammonium pools in a deep-sea mussel containing methanotrophic endosymbionts
.
Biol. Bull
190
,
367
–.
Lee
R. W.
,
Childress
J. J.
,
Desaulniers
N. T.
(
1997
).
Effects of ammonia exposure on ammonia and taurine pools of the symbiotic clam Solemyareidi
.
J. Exp. Biol
200
,
2797
–.
Lilley
M. D.
,
Butterfield
D. A.
,
Olson
E. J.
,
Lupton
J. E.
,
Macko
S. A.
,
McDuff
R. E.
(
1993
).
Anomalous CH4and NH4+300concentrations at an unsedimented mid-ocean-ridge hydrothermal system
.
Nature
364
,
45
–.
Lutz
R. A.
,
Shank
T. M.
,
Fornari
D. J.
,
Haymon
R. M.
,
Lilley
M. D.
,
Von Damm
K. L.
,
Desbruyeres
D.
(
1994
).
Rapid growth at deep-sea vents
.
Nature
371
,
663
–.
Magasanik
B.
(
1982
).
Genetic control of nitrogen assimilation in bacteria
.
Annu. Rev. Genet
16
,
135
–.
McAuley
P. J.
(
1995
).
Ammonium metabolism in the green hydra symbiosis
.
Biol. Bull
188
,
210
–.
Merrick
M. J.
,
Edwards
R. A.
(
1995
).
Nitrogen control in bacteria
.
Microbiol. Rev
59
,
604
–.
Murrel
J. C.
,
Dalton
H.
(
1983
).
Purification and properties of glutamine synthetase from Methylococcuscapsulatus (Bath)
.
J. Gen. Microbiol
129
,
1187
–.
Muscatine
L.
(
1967
).
Glycerol excretion by symbiotic algae from corals and Tridacna and its control by the host
.
Science
156
,
516
–.
Nierzwicki-Bauer
S. A.
,
Haselkorn
R.
(
1986
).
Differences in mRNA levels in Anabaena living freely or in symbiotic association with Azolla
.
EMBO J
5
,
29
–.
Payne
W. J.
(
1973
).
Reduction of nitrogen oxides by microorganisms
.
Bacteriol. Rev
37
,
409
–.
Powell
M. A.
,
Somero
G. N.
(
1986
).
Adaptations to sulfide by hydrothermal vent animals: sites and mechanisms of detoxification and metabolism
.
Biol. Bull
171
,
274
–.
Rees
T. A. V.
(
1987
).
The green hydra symbiosis and ammonium. I. The role of the host in ammonium assimilation and its possible regulatory significance
.
Proc. R. Soc. Lond. B
229
,
299
–.
Reid
R. G. B.
,
Bernard
F. R.
(
1980
).
Gutless bivalves
.
Science
208
,
609
–.
Reiss
P. M.
,
Pierce
S. K.
,
Bishop
S. H.
(
1977
).
Glutamate dehydrogenases from tissues of the ribbed mussel Modiolus demissus: ADP activation and possible physiological significance
.
J. Exp. Zool
202
,
253
–.
Showe
M. K.
,
DeMoss
J. A.
(
1968
).
Localization and regulation of synthesis of nitrate reductase in Escherichiacoli
.
J. Bacteriol
95
,
1305
–.
Stewart
V.
(
1994
).
Regulation of nitrate and nitrite reductase synthesis in enterobacteria
.
Antonie van Leeuwenhoek
66
,
37
–.
Trapido-Rosenthal
H. G.
,
Linser
P. J.
,
Greenberg
R. M.
,
Gleeson
R. A.
,
Carr
W. E. S.
(
1993
).
cDNA clones from the olfactory organ of the spiny lobster encode a protein related to eukaryotic glutamine synthetase
.
Gene
129
,
275
–.
Trench
R. K.
(
1971
).
The physiology and biochemistry of zooxanthellae symbiotic with marine coelenterates. III. The effects of homogenates of host tissues on the excretion of photosynthetic products invitro by zooxanthellae from two marine coelenterates
.
Proc. R. Soc. Lond. B
177
,
251
–.
Van't Riet
J.
,
Stouthamer
A. H.
,
Planta
R. J.
(
1968
).
Regulation of nitrate assimilation and nitrate respiration in Aerobacteraerogenes
.
J. Bacteriol
96
,
1455
–.
Vargas
A.
,
Strohl
W. R.
(
1985
).
Utilization of nitrate by Beggiatoaalba
.
Arch. Microbiol
142
,
279
–.
Wilmot
D. B.
,
Vetter
R. D.
(
1992
).
Oxygen-and nitrogen-dependent sulfur metabolism in the thiotrophic clam Solemyareidi
.
Biol. Bull
182
,
444
–.
This content is only available via PDF.