We used the cobalt-backfilling method to map the somata of neurones with axons that project in the two paired lateral nerves of the abdominal neuromeres of the locust Schistocerca gregaria with the objective of expanding and bringing together the incomplete and scattered information on these efferent neurones. We compared somata sizes and positions, and the pathways of primary neurites, with information from previous studies on individual, or groups of, abdominal neurones and we identify many of the somata we mapped. The stained somata belong to paired motor neurones and paired neurosecretory neurones, to unpaired neuromodulatory neurones (dorsal unpaired median, DUM, neurones) and unpaired bilaterally projecting neurones. In different neuromeres, the total number of somata with axons in these lateral nerves ranges from 73 to 106. Within an individual segmental neuromere, approximately 25 % of the somata belong to neurones with axons in nerve 1 (N1) and 35 % to those with axons in nerve 2 (N2) of that segment, while the remaining 40 % belong to neurones with axons in N1 of the next posterior segment. This basic pattern is repeated in all abdominal neuromeres, with differences in the percentages depending on whether the neuromeres are pregenital fused, pregenital unfused or genital. Nerve 1 contains the axons of 26–37 neurones with central somata in different neuromeres, of which 40 % are in the segmental neuromere and 60 % in the next anterior neuromere. In the segmental neuromere, 15 % of somata are ipsilateral to the nerve, 30 % are at the midline and 55 % are contralateral, whereas in the next anterior neuromere, 70 % are ipsilateral, 10 % are at the midline and 20 % are contralateral. Nerve 2 contains the axons of 11–28 neurones in different neuromeres, all of which have somata in the same segmental neuromere from which the nerve projects. Of these, approximately 70 % are ipsilateral, 30 % at the midline and none contralateral, except for the first abdominal and eighth male abdominal neuromeres, where one and two somata, respectively, are contralateral.

Baader
A.
(
1991
).
The contribution of some neck and abdominal motor neurones in locust (Locusta migratoria) steering reactions
.
J. Insect Physiol
37
,
689
–.
Bacon
J. P.
,
Altman
J. S.
(
1977
).
A silver intensification method for cobalt-filled neurones in wholemount preparations
.
Brain Res
138
,
359
–.
Belanger
J. H.
,
Orchard
I.
(
1993
).
The locust ovipositor opener muscle: properties of the neuromuscular system
.
J. Exp. Biol
174
,
321
–.
Blankenship
J. E.
,
Coggeshall
R. E.
(
1976
).
The abdominal ganglion of Aplysia brasiliana: A comparative morphological and electrophysiological study, with notes on A. dactylomela
.
J. Neurobiol
7
,
383
–.
Bräunig
P.
(
1982
).
Strand receptors with central cell bodies in the proximal leg joints of orthopterous insects
.
Cell Tissue Res
222
,
647
–.
Bräunig
P.
,
Hustert
R.
,
Pfluger
H.-J.
(
1981
).
Distribution and specific central projections of mechanoreceptors in the thorax and proximal leg joints of locusts. I. Morphology, location and innervation of internal proprioceptors of pro-and metathorax and their central projections
.
Cell Tissue Res
216
,
57
–.
Bräunig
P.
,
Stevenson
P. A.
,
Evans
P. D.
(
1994
).
A locust octopamine-immunoreactive dorsal unpaired median neurone forming terminal networks on sympathetic nerves
.
J. Exp. Biol
192
,
225
–.
Breidbach
O.
,
Kutsch
W.
(
1990
).
Structural homology of identified motor neurones in larval and adult stages of hemi-and holometabolous insects
.
J. Comp. Neurol
297
,
392
–.
Cantera
R.
,
Nässel
D. R.
(
1992
).
Segmental peptidergic innervation of abdominal targets in larval and adult dipteran insects revealed with an antiserum against leucokinin I
.
Cell Tissue Res
269
,
459
–.
Dircksen
H.
,
Muller
A.
,
Keller
R.
(
1991
).
Crustacean cardioactive peptide in the nervous system of the locust, Locustamigratoria: an immunocytochemical study on the ventral nerve cord and peripheral innervation
.
Cell Tissue Res
263
,
439
–.
Faulkes
Z.
,
Paul
D. H.
(
1997
).
A map of distal leg motor neurones in the thoracic ganglia of four decapod crustacean species
.
Brain Behav. Evol
49
,
162
–.
Ferber
M.
,
Pfluger
H.-J.
(
1990
).
Bilaterally projecting neurones in pregenital abdominal ganglia of the locust: anatomy and peripheral targets
.
J. Comp. Neurol
302
,
447
–.
Goodman
C. S.
,
Bate
M.
(
1981
).
Neuronal development in the grasshopper
.
Trends Neurosci
4
,
163
–.
Hustert
R.
(
1975
).
Neuromuscular coordination and proprioceptive control of rhythmical abdominal ventilation in intact Locusta migratoria migratorioides
.
J. Comp. Physiol
9
,
159
–.
Hustert
R.
,
Pfluger
H.-J.
,
Bräunig
P.
(
1981
).
Distribution and specific central projections of mechanoreceptors in the thorax and proximal leg joints of locusts. III. The external mechanoreceptors: the campaniform sensilla
.
Cell Tissue Res
21
,
97
–.
Kalogianni
E.
,
Pfluger
H.-J.
(
1992
).
The identification of motor and unpaired median neurones innervating the locust oviduct
.
J. Exp. Biol
16
,
177
–.
Kimura
T.
,
Yasuyama
K.
,
Yamaguchi
T.
(
1989
).
Proctolinergic innervation of the accessory gland in male crickets (Gryllus bimaculatus): detection of proctolin and some pharmacological properties of myogenically and neurogenically evoked contractions
.
J. Insect Physiol
3
,
251
–.
Lewis
G. W.
,
Miller
P. L.
,
Mills
P. S.
(
1973
).
Neuro-muscular mechanisms of abdominal pumping in the locust
.
J. Exp. Biol
59
,
149
–.
Nässel
D. R.
(
1996
).
Neuropeptides, amines and amino acids in an elementary insect ganglion: functional and chemical anatomy of the unfused abdominal ganglion
.
Prog. Neurobiol
48
,
325
–.
Nässel
D. R.
,
Cantera
R.
,
Karlsson
A.
(
1992
).
Neurons in the cockroach nervous system reacting with antisera to the neuropeptide leucokinin I
.
J. Comp. Neurol
322
,
45
–.
Pfluger
H.-J.
,
Watson
A. H. D.
(
1988
).
Structure and distribution of dorsal unpaired median (DUM) neurones in the abdominal nerve cord of male and female locusts
.
J. Comp. Neurol
268
,
329
–.
Pfluger
H.-J.
,
Watson
A. H. D.
(
1995
).
GABA and glutamate-like immunoreactivity at synapses received by dorsal unpaired median neurones in the abdominal nerve cord of the locust
.
Cell Tissue Res
280
,
325
–.
Schoofs
L.
,
Holman
G. M.
,
Proost
P.
,
Van
D. J.
,
Hayes
T. K.
,
De Loof
A.
(
1991
).
Locustakinin, a novel myotropic peptide from Locusta migratoria, isolation, primary structure and synthesis
.
Regul. Pept
37
,
49
–.
Siegler
M. V. S.
,
Phong
M. P.
,
Pousman
C. A.
(
1991
).
Motor neurons supplying hindwing muscles of a grasshopper: Topography and distribution into anatomical groups
.
J. Comp. Neurol
310
,
342
–.
Siegler
M. V. S.
,
Pousman
C. A.
(
1990
).
Motor neurons of grasshopper metathoracic ganglion occur in stereotypic anatomical groups
.
J. Comp. Neurol
297
,
298
–.
Siegler
M. V. S.
,
Pousman
C. A.
(
1990
).
Distribution of motor neurons into anatomical groups in the grasshopper metathoracic ganglion
.
J. Comp. Neurol
297
,
313
–.
Stevenson
P. A.
,
Pfluger
H.-J.
(
1994
).
Colocalization of octopamine and FMRFamide related peptide in identified heart projecting (DUM) neurones in the locust revealed by immunocytochemistry
.
Brain Res
638
,
117
–.
Stevenson
P. A.
,
Pfluger
H.-J.
,
Eckert
M.
,
Rapus
J.
(
1992
).
Octopamine immunoreactive cell populations in the locust thoracic-abdominal nervous system
.
J. Comp. Neurol
315
,
382
–.
Stevenson
P. A.
,
Pfluger
H.-J.
,
Eckert
M.
,
Rapus
J.
(
1994
).
Octopamine-like immunoreactive neurones in locust genital abdominal ganglia
.
Cell Tissue Res
275
,
299
–.
Thompson
K. S. J.
,
Rayne
R. C.
,
Gibbon
C. R.
,
May
S. T.
,
Patel
M.
,
Coast
G. M.
,
Bacon
J. P.
(
1995
).
Cellular colocalization of diuretic peptides in locusts: a potent control mechanism
.
Peptides
16
,
95
–.
Yang
Q.
,
Burrows
M.
(
1983
).
The identification of motor neurones innervating an abdominal ventilatory muscle in the locust
.
J. Exp. Biol
107
,
115
–.
Yasuyama
K.
,
Kimura
T.
,
Yamaguchi
T.
(
1988
).
Musculature and innervation of the internal reproductive organs in the male cricket, with special reference to the projection of unpaired median neurones of the terminal abdominal ganglion
.
Zool. Sci
5
,
767
–.
This content is only available via PDF.