Both neutralophilic Bacillus subtilis and alkaliphilic Bacillus firmus OF4 depend upon electrogenic Na+/H+ antiporters, which are energized by the gradients established by respiration-coupled proton extrusion, to achieve Na(+)-resistance and pH homeostasis when the external pH is very alkaline. The interplay of proton and sodium cycles is discussed. In B. subtilis, pH homeostasis, up to pH9, can be achieved using K+ when Na+ is unavailable or when the gene encoding the Na+/H+ antiporter that is involved in Na(+)-dependent pH homeostasis is disrupted. That gene is a member of the tetracycline efflux family of genes. A second gene, encoding a Na+/H+ antiporter that functions in Na(+)-resistance, has been identified, and candidates for the K+/H+ antiporter genes are under investigation. Aggregate Na+/H+ antiport activity in B. subtilis is as much as 10 times lower than in the alkaliphile, and the neutralophile cannot regulate its internal pH upon a shift to pH 10.5. Upon such a shift, there is a pronounced reduction in the generation of a primary electrochemical proton gradient. The alkaliphile, by contrast, maintains substantial driving forces and regulates its internal pH in an exclusively Na(+)-coupled manner upon shifts to either pH 8.7 or 10.5. One gene locus has been identified and a second locus has been inferred as encoding relevant antiporter activities.
The role of monovalent cation/proton antiporters in Na(+)-resistance and pH homeostasis in Bacillus: an alkaliphile versus a neutralophile.
T A Krulwich, J Cheng, A A Guffanti; The role of monovalent cation/proton antiporters in Na(+)-resistance and pH homeostasis in Bacillus: an alkaliphile versus a neutralophile.. J Exp Biol 1 November 1994; 196 (1): 457–470. doi: https://doi.org/10.1242/jeb.196.1.457
Download citation file:
Advertisement
Cited by
In the field: an interview with Harald Wolf
(update)-Conversation.jpg?versionId=3747)
In our new Conversation, Harald Wolf talks about his fieldwork experiences working with desert ants in Tunisia to understand their navigation.
Propose a new Workshop
-GSWorkshop.png?versionId=3747)
Our Workshops bring together leading experts and early-career researchers from a range of scientific backgrounds. Applications are now open to propose Workshops for 2024, one of which will be held in a Global South country.
Julian Dow steps down and John Terblanche joins the JEB team
-NewEditor.png?versionId=3747)
After 15 years with the journal, Julian Dow from University of Glasgow, UK, is stepping down as a Monitoring Editor. We wish Julian all the best for the future and welcome John Terblanche, Stellenbosch University, South Africa, who is joining the team. Julian talks about his long association with The Company of Biologists and the journal and John tells us about his life and career in this News article.
The capture of crude oil droplets by filter feeders at high and low Reynolds numbers
-FilterFeeders.jpg?versionId=3747)
Researchers from the University of Montreal, Canada, reveal how tiny filter feeding barnacles and Daphnia entrap and consume minute droplets of crude oil, introducing the pollutant at the bottom of the food chain.
Patterns and processes in amphibious fish
-Review.png?versionId=3747)
In their Review, Keegan Lutek, Cassandra Donatelli and Emily Standen discuss the biomechanics and neural control of terrestrial locomotion in amphibious fish. They explore how locomotor mode depends on body shape, physical constraints and phylogeny.