The mechanical power output of fast-twitch fibres from the iliofibularis of the lizard Dipsosaurus dorsalis was measured over a broad body temperature range using the oscillatory work-loop technique. The optimal cycling frequency, that frequency at which mechanical power output is maximal, increases with temperature from 3.3 Hz at 15°C to 20.1 Hz at 42°C. Maximum power output increases with temperature, from 20 W kg-1 at 15°C to 154 W kg-1 at 42°C, the largest power output yet measured using the work-loop technique. At low temperatures (15°C and 22°C), stride frequency during burst running is nearly identical to the optimal cycling frequency for in vitro power output, suggesting that maximum power output may limit hindlimb cycle frequency in vivo. However, at higher temperatures (35°C and 42°C), the optimal cycling frequency of the isolated muscle is significantly higher than the burst stride frequency, demonstrating that contractile events no longer limit hindlimb cycle frequency. At higher temperatures, it is thus unlikely that the fast-twitch fibres of this muscle in vivo attain their potential for maximum power output.
TEMPERATURE, MUSCLE POWER OUTPUT AND LIMITATIONS ON BURST LOCOMOTOR PERFORMANCE OF THE LIZARD DIPSOSAURUS DORSALIS
S. J. Swoap, T. P. Johnson, R. K. Josephson, A. F. Bennett; TEMPERATURE, MUSCLE POWER OUTPUT AND LIMITATIONS ON BURST LOCOMOTOR PERFORMANCE OF THE LIZARD DIPSOSAURUS DORSALIS. J Exp Biol 1 January 1993; 174 (1): 185–197. doi: https://doi.org/10.1242/jeb.174.1.185
Download citation file:
Advertisement
Cited by
In the field: an interview with Martha Muñoz

Martha Muñoz is an Assistant Professor at Yale University, investigating the evolutionary biology of anole lizards and lungless salamanders. In our new Conversation, she talks about her fieldwork in Indonesia, Costa Rica, the Dominican Republic and the Appalachian Mountains, including a death-defying dash to the top of a mountain through an approaching hurricane.
Graham Scott in conversation with Big Biology

Graham Scott talks to Big Biology about the oxygen cascade in mice living on mountaintops, extreme environments for such small organisms. In this JEB-sponsored episode, they discuss the concept of symmorphosis and the evolution of the oxygen cascade.
Trap-jaw ants coordinate tendon and exoskeleton for perfect mandible arc
-AntJaws.png?versionId=3942)
Trap-jaw ants run the risk of tearing themselves apart when they fire off their mandibles, but Greg Sutton & co have discovered that the ants simultaneously push and pull the mandibles using energy stored in a head tendon and their exoskeleton to drive the jaws in a perfect arc.
Hearing without a tympanic ear
-Review.png?versionId=3942)
In their Review, Grace Capshaw, Jakob Christensen-Dalsgaard and Catherine Carr explore the mechanisms of hearing in extant atympanate vertebrates and the implications for the early evolution of tympanate hearing.