The rhythmic firing pattern of the putatively octopaminergic dorsal unpaired median (DUM) neurones supplying the oviductal system of female orthopterans, Calliptamus sp. and Decticus albifrons, was examined. Our data provide evidence that the oviductal DUM neurones in the seventh abdominal ganglion modulate the oviductal motor pattern, both peripherally and centrally, during the inhibition of egg-laying behaviour. In a minimally dissected animal, rhythmic activation of the oviductal DUM and motor neurones can be readily elicited by isolation of the seventh abdominal ganglion from the anterior part of the nerve cord. The bursting activity of the DUM neurones is temporally correlated with the oviductal motor rhythm. Both populations of oviductal neurones retain their rhythmic firing pattern after total isolation of the genital ganglia, indicating the presence of an oviductal central pattern generator. The effects of stimulation of oviductal DUM neurones on the oviductal motor activity were monitored by recording intracellularly from oviductal muscle fibres and extracellularly from motor axons. These effects consist of a reduction in the amplitude and frequency of excitatory postsynaptic potentials (EPSPs) in the muscle fibre and in the firing rate in oviductal motor neurones. We suggest that the change in EPSP amplitude results from peripheral release of octopamine by DUM neurones. The decreased firing rate of motor neurones, however, appears to be a central effect, possibly caused by central release of octopamine by DUM neurones.

This content is only available via PDF.