Chloride channels were previously purified from bovine kidney cortex membranes using a drug affinity column. Reconstitution of the purified proteins into artificial liposomes and planar bilayers yielded chloride channels. A 64 x 10(3) M(r) protein, p64, identified as a component of this chloride channel, was used to generate antibodies which depleted solubilized kidney membranes of all chloride channel activity. This antibody has now been used to identify a clone, H2B, from a kidney cDNA library. Antibodies, affinity-purified against the fusion protein of H2B, from a kidney cDNA library. Antibodies, affinity-purified against the fusion protein of H2B, also depleted solubilized kidney cortex from all chloride channel activity. The predicted amino acid sequence of p64 shows that it contains two and possibly four putative transmembrane domains and potential phosphorylation sites by protein kinases A and C. There was no significant homology to other protein (or DNA) sequences in the data base including other anion channels or the cystic fibrosis transmembrane conductance regulator. The protein is expressed in all cells tested and probably represents the chloride channel of intracellular organelles. Cystic fibrosis (CF) is associated with a defect in a cyclic-AMP-activated chloride channel in secretory epithelia which leads to decreased fluid secretion. In addition, many mucus glycoproteins show decreased sialylation but increased sulfation. We have recently shown that the pH of intracellular organelles is more alkaline in CF cells, an abnormality that is due to defective chloride conductance in the vesicle membranes. We postulate that the defect in the intracellular chloride channel, and hence the alkalization, could explain the glycosylation abnormalities since the pH optimum of Golgi sialyltransferase is acid while that of focusyl- and sulfotransferases is alkaline. Defects in sialyation of glycolipids might also generate receptors for Pseudomonas, which is known to colonize the respiratory tract of CF patients.
Chloride channels of intracellular organelles and their potential role in cystic fibrosis.
Q al-Awqati, J Barasch, D Landry; Chloride channels of intracellular organelles and their potential role in cystic fibrosis.. J Exp Biol 1 November 1992; 172 (1): 245–266. doi: https://doi.org/10.1242/jeb.172.1.245
Download citation file:
Advertisement
Cited by
Celebrating 100 years of discovery

We are proud to be celebrating 100 years of discovery in Journal of Experimental Biology. Visit our centenary webpage to find out more about how we are marking this historic milestone.
Craig Franklin launches our centenary celebrations

Editor-in-Chief Craig Franklin reflects on 100 years of JEB and looks forward to our centenary celebrations, including a supplementary special issue, a new early-career researcher interview series and the launch of our latest funding initiatives.
Looking back on the first issue of JEB

Journal of Experimental Biology launched in 1923 as The British Journal of Experimental Biology. As we celebrate our centenary, we look back at that first issue and the zoologists publishing their work in the new journal.
Webinar: Increasing the visibility and impact of your research
-HUBSwebinar.jpg?versionId=4510)
Would you like to increase the visibility and impact of your research and raise your profile internationally? If so, register for the very practical webinar we are running in association with HUBS on 23 February 2023.
Biology Communication Workshop: Engaging the world in the excitement of research
-BioCommunicationWorkshop.png?versionId=4510)
We are delighted to be sponsoring a Biology Communication Workshop for early-career researchers as part of JEB’s centenary celebrations. The workshop focuses on how to effectively communicate your science to other researchers and the public and takes place the day before the CSZ annual meeting, on 14 May 2023. Find out more and apply here.
Mexican fruit flies wave for distraction

Dinesh Rao and colleagues have discovered that Mexican fruit flies vanish in a blur in the eyes of predatory spiders when they wave their wings at the arachnids, buying the flies time to make their escape.