The regulation of K+ transport across the red blood cell (RBC) membrane by haemoglobin (Hb) conformation was studied in carp, and the K+ transport mechanisms were identified. When a large proportion of Hb in the R quaternary structure was secured by oxygenation of blood at pH8.14, a net RBC K+ efflux was induced, which was accompanied by RBC shrinkage. This K+ efflux was resistant to ouabain and inhibited by furosemide and DIDS and by substitution of NO3− for Cl−, showing it to result from a K+/Cl− cotransport mechanism. Deoxygenation of the RBCs (Hb in T structure) eliminated the Cl−-dependent K+ efflux and resulted in a net K+ uptake via the Na+/K+ pump. These changes were fully reversible. Nitrite-induced methaemoglobin formation in deoxygenated blood, which converts a large fraction of the T structure Hb into an R-like conformation, shifted the K+ uptake to a Cl−-dependent K+ efflux similar to that seen in oxygenated cells. When the allosteric equilibrium between the R and T structures of Hb was gradually shifted towards the T state by decreases in pH, the Cl−-dependent K+ efflux from oxygenated cells decreased. At pH7.52, where the Root effect caused a potent stabilisation of the T state, the K+ efflux was reversed to a net K+ uptake. A similar change was induced in methaemoglobin-containing deoxygenated blood, since low pH also favours a T-like conformation of metHb. The variable K+ fluxes could not be related to changes in membrane potential or pH but were always directly related to the experimental modulation of the relative proportions of R- and T-structure Hb. It is proposed that Hb conformation governs K+ movements via a different binding of T and R structures to integral membrane proteins, and that a large fraction of R-structure Hb triggers the Cl−dependent K+ efflux mechanism. Application of inhibitors and a substrate of prostaglandin and leukotriene synthesis did not influence the K+ efflux from oxygenated erythrocytes. However, a fraction of the K+ efflux from nitrite-treated deoxygenated cells was inhibited by nordihydroguaiaretic acid, suggesting that a slightly larger K+ efflux from these RBCs than from oxygenated RBCs was related to leukotriene production caused by nitrite entry. A much larger influx of nitrite to deoxygenated than to oxygenated RBCs was positively correlated with the distribution ratio of H+ and the membrane potential, supporting the view that nitrite primarily enters the cells via conductive transport. The physiological implications of the results are discussed.
Influence of Haemoglobin Conformation, Nitrite and Eicosanoids on K+ Transport Across the Carp Red Blood Cell Membrane
FRANK B. JENSEN; Influence of Haemoglobin Conformation, Nitrite and Eicosanoids on K+ Transport Across the Carp Red Blood Cell Membrane. J Exp Biol 1 October 1992; 171 (1): 349–371. doi: https://doi.org/10.1242/jeb.171.1.349
Download citation file:
Advertisement
Cited by
In the field: an interview with Harald Wolf
(update)-Conversation.jpg?versionId=3747)
In our new Conversation, Harald Wolf talks about his fieldwork experiences working with desert ants in Tunisia to understand their navigation.
Propose a new Workshop
-GSWorkshop.png?versionId=3747)
Our Workshops bring together leading experts and early-career researchers from a range of scientific backgrounds. Applications are now open to propose Workshops for 2024, one of which will be held in a Global South country.
Julian Dow steps down and John Terblanche joins the JEB team
-NewEditor.png?versionId=3747)
After 15 years with the journal, Julian Dow from University of Glasgow, UK, is stepping down as a Monitoring Editor. We wish Julian all the best for the future and welcome John Terblanche, Stellenbosch University, South Africa, who is joining the team. Julian talks about his long association with The Company of Biologists and the journal and John tells us about his life and career in this News article.
The capture of crude oil droplets by filter feeders at high and low Reynolds numbers
-FilterFeeders.jpg?versionId=3747)
Researchers from the University of Montreal, Canada, reveal how tiny filter feeding barnacles and Daphnia entrap and consume minute droplets of crude oil, introducing the pollutant at the bottom of the food chain.
Patterns and processes in amphibious fish
-Review.png?versionId=3747)
In their Review, Keegan Lutek, Cassandra Donatelli and Emily Standen discuss the biomechanics and neural control of terrestrial locomotion in amphibious fish. They explore how locomotor mode depends on body shape, physical constraints and phylogeny.