The sensitivity of red blood cell Na+/H+ exchange to exogenous adrenaline was assessed in vitro using blood withdrawn from catheterized rainbow trout (Oncorhynchus mykiss) maintained under normoxic conditions [water PO2, (PwO2)=20.66 kPa] or after exposure to moderate hypoxia (PwO2=6.67-9.33 kPa) for 48 h, which chronically elevated plasma adrenaline, but not noradrenaline, levels. Peak changes in whole-blood extracellular pH over a 30 min period after adding 50–1000 nmoll−1 adrenaline were employed as an index of sensitivity; the blood was pre-equilibrated to simulate arterial blood gas tensions in severely hypoxic fish (PaO2=2.0 kPa, PaCO2=0.31 kPa). Blood pooled from normoxic fish displayed a dose-dependent reduction in whole-blood pH after addition of adrenaline. Blood pooled from three separate groups of hypoxic fish, however, displayed diminished sensitivity to adrenaline, ranging from complete desensitization to a 60%reduction of the response. Subsequent experiments performed on blood from individual (i.e. not pooled) normoxic or hypoxic fish demonstrated an inverse correlation between the intensity of H+ extrusion (induced by exogenous adrenaline addition) and endogenous plasma adrenaline levels at the time of blood withdrawal. However, acute increases in plasma adrenaline levels in vitro did not affect the responsiveness of the red blood cell to subsequent adrenergic stimulation. The intensity of H+ extrusion was inversely related to the PaO2in vivo between 2.67 and 10.66 kPa, and directly related to the logarithm of the endogenous plasma adrenaline level. The results suggest that desensitization of Na+/H+ exchange in chronically hypoxic fish is related to persistent elevation of levels of this catecholamine. This desensitization can be reversed in vitro as a function of time, but only when blood is maintained under sufficiently aerobic conditions.

This content is only available via PDF.