The larval muscle fibers of Drosophila show four outward K+ currents in addition to the inward Ca2+ current in voltage-clamp recordings. The Shaker (Sh) and the slowpoke (slo) mutations, respectively, eliminate the voltage-activated fast K+ current (IA) and the Ca2(+)-activated fast K+ current (ICF). Quinidine specifically blocks the voltage-activated delayed K+ current (IK) at micromolar concentrations. We used Sh, slo and quinidine to remove specifically one or more K+ currents, so as to study physiological properties of these currents not previously characterized, and to examine their role in membrane excitability. A linear relationship was observed between the peak ICF and the peak ICa at different membrane potentials. ICF inactivated considerably during a 140 ms pulse to +20 mV. Recovery from inactivation was not complete for up to 2 s at the holding potential of −50 mV, which is much slower than the recovery of Ca2+ current from inactivation. In addition to IA and ICF, two delayed K+ currents are also observed in these fibers, the voltage-activated IK and the Ca2(+)-activated ICS. Near the end of a 500 ms depolarizing pulse, both IA and ICF are inactivated. Ca2(+)-free and 20 mmol l-1 Ca2+ saline were used to examine the tail currents of the remaining IK and ICS. The tail currents of ICS were slower than those of IK and reversed between −30 and −50 mV in different fibers. We further studied the dose-dependence of the blockade of IK by quinidine, which did not indicate a simple one-to-one binding mechanism. Current-clamp recordings from normal, Sh, slo and the double-mutant Sh;slo fibers suggested that ICF plays a stronger role than IA in repolarization of the larval muscle membrane. Elimination of ICF facilitates the occurrence of action potentials. Further elimination of IK prolonged the action potentials to several hundred milliseconds.
Properties of potassium currents and their role in membrane excitability in Drosophila larval muscle fibers
S. Singh, C. F. Wu; Properties of potassium currents and their role in membrane excitability in Drosophila larval muscle fibers. J Exp Biol 1 September 1990; 152 (1): 59–76. doi: https://doi.org/10.1242/jeb.152.1.59
Download citation file:
Advertisement
Cited by
In the field: an interview with Harald Wolf
(update)-Conversation.jpg?versionId=3772)
In our new Conversation, Harald Wolf talks about his fieldwork experiences working with desert ants in Tunisia to understand their navigation.
Propose a new Workshop
-GSWorkshop.png?versionId=3772)
Our Workshops bring together leading experts and early-career researchers from a range of scientific backgrounds. Applications are now open to propose Workshops for 2024, one of which will be held in a Global South country.
Julian Dow steps down and John Terblanche joins the JEB team
-NewEditor.png?versionId=3772)
After 15 years with the journal, Julian Dow from University of Glasgow, UK, is stepping down as a Monitoring Editor. We wish Julian all the best for the future and welcome John Terblanche, Stellenbosch University, South Africa, who is joining the team. Julian talks about his long association with The Company of Biologists and the journal and John tells us about his life and career in this News article.
An accelerometer-derived ballistocardiogram method for detecting heart rate in free-ranging marine mammals
-Whales.jpg?versionId=3772)
Max Czapanskiy and co show how the resting heart rates of blue whales are immortalized in the accelerometry traces collected by motion sensing data tags.
Global change and physiological challenges for Amazonian fish
-Review.png?versionId=3772)
In their Review, Adalberto Luis Val and Chris Wood discuss the physiological threats to the unique and diverse fish fauna of Amazonia.