Simultaneous direct and indirect calorimetry together with biochemical determinations of metabolite concentrations were used to compare the normoxic and anoxic energy metabolism of goldfish at 20°C. The normoxic and anoxic heat production levels determined by direct calorimetry were in agreement with previous results: 700 and 200Jh−1MW−1, respectively (where MW is metabolic weight, kg0.85). Metabolite determinations during normoxia and after 3 and 8 h of anoxia showed that during anoxia a thermodynamic steady state is reached. By simultaneous calorimetry the amounts of oxidized substrates during normoxia and anoxia and the amount of excreted ethanol, the end product of incomplete anaerobic oxidation, as well as normoxic and anoxic carbon dioxide production were determined. During normoxia and anoxia the same substrates for oxidation are used (carbohydrate and protein) by small starving goldfish, but the end products are different. During normoxia oxidation is complete (to CO2 and H2O; protein oxidation also has ammonia as an end product, but this is considered physiologically as complete oxidation), whereas during anoxia oxidation is incomplete, with ethanol, which is excreted, and CO2 as end products. From the indirect calorimetric calculations it appeared that anoxic goldfish also produce fat. Glycogen storage appears to be crucial in the anoxia survival strategy.
Simultaneous Direct and Indirect Calorimetry on Normoxic and Anoxic Goldfish
J. VAN WAVERSVELD, A. D. F. ADDINK, G. VAN DEN THILLART; Simultaneous Direct and Indirect Calorimetry on Normoxic and Anoxic Goldfish. J Exp Biol 1 March 1989; 142 (1): 325–335. doi: https://doi.org/10.1242/jeb.142.1.325
Download citation file:
Advertisement
Cited by
In the field: an interview with Martha Muñoz

Martha Muñoz is an Assistant Professor at Yale University, investigating the evolutionary biology of anole lizards and lungless salamanders. In our new Conversation, she talks about her fieldwork in Indonesia, Costa Rica, the Dominican Republic and the Appalachian Mountains, including a death-defying dash to the top of a mountain through an approaching hurricane.
Call for new preLighters
(update)-CallForPreLighters.png?versionId=3981)
preLights is the preprint highlighting community supported by The Company of Biologists. At the heart of preLights are our preLighters: early-career researchers who select and write about interesting new preprints for the research community. We are currently looking for new preLighters to join our team. Find out more and apply here.
Graham Scott in conversation with Big Biology

Graham Scott talks to Big Biology about the oxygen cascade in mice living on mountaintops, extreme environments for such small organisms. In this JEB-sponsored episode, they discuss the concept of symmorphosis and the evolution of the oxygen cascade.
Trap-jaw ants coordinate tendon and exoskeleton for perfect mandible arc
-AntJaws.png?versionId=3981)
Trap-jaw ants run the risk of tearing themselves apart when they fire off their mandibles, but Greg Sutton & co have discovered that the ants simultaneously push and pull the mandibles using energy stored in a head tendon and their exoskeleton to drive the jaws in a perfect arc.
Hearing without a tympanic ear
-Review.png?versionId=3981)
In their Review, Grace Capshaw, Jakob Christensen-Dalsgaard and Catherine Carr explore the mechanisms of hearing in extant atympanate vertebrates and the implications for the early evolution of tympanate hearing.