The lamprey spinal cord, in isolation or with the brainstem, can be used in vitro. The motor patterns underlying the swimming movements can be elicited by: (1) a pharmacological activation of a specific type of neuronal receptor (NMDA-receptor), that may in other systems give rise to an unstable membrane potential, (2) by stimulation of the brainstem or (3) by tactile activation of skin regions left innervated. In the latter case the initiation of ‘fictive’ swimming is partially caused by a release of a transmitter activating NMDA-receptors, as judged by the effect of NMDA-receptor blockers. The central pattern generator (CPG) is strongly influenced by feedback from mechanosensitive elements, which at least partially reside within the spinal cord. The edge cell in the lamprey spinal cord serves as an intraspinal mechanoreceptor. The ability to generate a coordinated motor output is distributed, since spinal cord sections down to 1.5–2 segments can be made to generate alternating activity. Motor neurones receive an approximately synchronous alternating excitatory and inhibitory drive in each swim cycle and do not appear to be part of the CPG. Motor neurones supplying different parts of the body wall on the same side of a body segment have different morphology with ramifications around different descending axons. The input drive signal during fictive locomotion to motor neurones located close to each other but with different morphological characteristics may differ substantially with regard to the γ-relationship (±25%) and the shape of the oscillation. This implies that even at a segmental level motor neurones may be further subdivided, and furthermore that the ipsilateral network generating the drive signal to ipsilateral motor neurones generates a more complex and individualized output than previously assumed. Motor neurones are not part of the rhythm-generating circuit. The large identifiable interneurones are not required for rhythmic activity to occur although they may be phasically active in the swim cycle. The small segmental interneurones have not yet been completely characterized. Many are phasically active during ‘fictive locomotion’ and lack an apparent axon. Their phase relationships in relation to the burst patterns vary over the entire swim cycle.
How does the Lamprey Central Nervous System make the Lamprey Swim?
STEN GRILLNER, PETER WALLÉN; How does the Lamprey Central Nervous System make the Lamprey Swim?. J Exp Biol 1 September 1984; 112 (1): 337–357. doi: https://doi.org/10.1242/jeb.112.1.337
Download citation file:
Advertisement
Cited by
In the field: an interview with Harald Wolf
(update)-Conversation.jpg?versionId=3747)
In our new Conversation, Harald Wolf talks about his fieldwork experiences working with desert ants in Tunisia to understand their navigation.
Propose a new Workshop
-GSWorkshop.png?versionId=3747)
Our Workshops bring together leading experts and early-career researchers from a range of scientific backgrounds. Applications are now open to propose Workshops for 2024, one of which will be held in a Global South country.
Julian Dow steps down and John Terblanche joins the JEB team
-NewEditor.png?versionId=3747)
After 15 years with the journal, Julian Dow from University of Glasgow, UK, is stepping down as a Monitoring Editor. We wish Julian all the best for the future and welcome John Terblanche, Stellenbosch University, South Africa, who is joining the team. Julian talks about his long association with The Company of Biologists and the journal and John tells us about his life and career in this News article.
The capture of crude oil droplets by filter feeders at high and low Reynolds numbers
-FilterFeeders.jpg?versionId=3747)
Researchers from the University of Montreal, Canada, reveal how tiny filter feeding barnacles and Daphnia entrap and consume minute droplets of crude oil, introducing the pollutant at the bottom of the food chain.
Patterns and processes in amphibious fish
-Review.png?versionId=3747)
In their Review, Keegan Lutek, Cassandra Donatelli and Emily Standen discuss the biomechanics and neural control of terrestrial locomotion in amphibious fish. They explore how locomotor mode depends on body shape, physical constraints and phylogeny.