One of the most extraordinary results of selective breeding is the modern broiler chicken, whose phenotypic attributes reflect its genetic success. Unfortunately, leg health issues and poor walking ability are prevalent in the broiler population, with the exact aetiopathogenesis unknown. Here we present a biomechanical analysis of the gait dynamics of the modern broiler and its two pureline commercial broiler breeder lines (A and B) in order to clarify how changes in basic morphology are associated with the way these chickens walk. We collected force plate and kinematic data from 25 chickens (market age), over a range of walking speeds, to quantify the 3D dynamics of the centre of mass (CoM) and determine how these birds modulate the force and mechanical work of locomotion. Common features of their gait include extremely slow walking speeds, a wide base of support and large lateral motions of the CoM, which primarily reflect changes to cope with their apparent instability and large body mass. These features allowed the chickens to keep their peak vertical forces low, but resulted in high mediolateral forces, which exceeded fore-aft forces. Gait differences directly related to morphological characteristics also exist. This was particularly evident in pureline B birds, which have a more crouched limb posture. Mechanical costs of transport were still similar across all lines and were not exceptional when compared to more wild-type ground-running birds. Broiler chickens seem to have an awkward gait, but some aspects of their dynamics show rather surprising similarities to other avian bipeds.

This content is only available via PDF.

Article PDF first page preview

Article PDF first page preview