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Seasonal cellular stress phenomena and phenotypic plasticity
in land snail Helix lucorum populations from different altitudes
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ABSTRACT

Temperature, a major abiotic environmental factor, regulates various
physiological functions in land snails and therefore determines their
biogeographical distribution. Thus, species with different distributions
may present different thermal tolerance limits. Additionally, the intense
reactivation of snail metabolic rate upon arousal from hibernation or
estivation may provoke stress. Land snails, Helix lucorum, display a
wide altitudinal distribution resulting in populations being exposed to
different seasonal temperature variations. The aim of the present
study was to investigate the expression of heat shock proteins (Hsps),
mitogen activated protein kinases (MAPKs) and proteins that are
related to apoptosis (Bcl-2, ubiquitin), that have ‘cytoprotective’ roles
and are also considered to be reliable indicators of stress because
of their crucial role in maintaining cellular homeostasis. These
proteins were assessed in H. lucorum individuals from two different
populations, one at Axios (sea level, O0m) and the other at
Kokkinopilos (Olympus, 1250 m), as well as after mutual population
exchanges, in order to find out whether the different responses of
these stress-related proteins depend solely on the environmental
temperature. The results showed seasonally altered levels in all
studied proteins in the hepatopancreas and foot of snails, both among
different populations and between the same populations exposed to
varying altitudes. However, individuals of the same population in their
native habitat or acclimatized to a different habitat showed a relatively
similar pattern of expression, supporting the induction of the specific
proteins according to the life history of each species.

KEY WORDS: Species distribution, Temperature variation,
Tissue-specific response, Oxidative stress, Vertical distribution

INTRODUCTION

Ambient temperature affects the functions of all organisms through
changes in the rates of physiological and biochemical processes, and
influences species distribution (Somero, 2010; Portner, 2012).
Temperature can also determine species habitat suitability and
biogeographical distribution. The thermal tolerance of ectotherms is
proportional to the magnitude of temperature variation in their
habitat, which often increases with latitude or altitude (Huey and
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Stevenson, 1979; Kingsolver and Huey, 2008). The climate
variability hypothesis suggests that thermal limits and tolerance
differ greatly between ectotherms with different latitude or altitude
distributions. Thus, species or populations evolved wider thermal
tolerance breadth in environments with more variable temperatures,
versus thermal specialization in thermally stable environments
(Pallarés et al., 2019). Within species distributed over a wide
latitudinal range, higher latitude individuals experience lower than
optimal temperatures, whereas those at lower latitudes experience
average temperatures closer to the upper thermal limit (Portner,
2002; Righton et al., 2010). A corollary of this hypothesis is that an
organism’s thermal limits are adapted to the climate extremes that
they experience. However, many ectotherms display phenotypic
plasticity to compensate for drastic changes in environmental
conditions (Seebacher et al., 2015), thus avoiding stress phenomena
and protein malfunction. Plastic responses occur on a short-term
scale (reversible changes within an individual, i.e. phenotypic
flexibility) or on a long-term scale (irreversible changes).

Several studies have shown significant metabolic differences and
thermal tolerance limits in land snail species occupying different
geographic habitats (Staikou, 1999; Kohler et al., 2009; Scheil et al.,
2011; Mizrahi et al., 2012a,b; Gaitan-Espitia et al., 2013a,b;
Staikou et al., 2016, 2017; Schweizer et al., 2019). In temperate
regions, land snails undergo yearly activity and dormancy cycles
(estivation and/or hibernation) in response to environmental
stimuli such as high or low temperature, and humidity (Staikou
et al., 1989; Giokas et al., 2005; Staikou and Koemtzopoulos,
2019). During hibernation, land snails face low and sometimes
subzero temperatures. Metabolic depression and hypometabolism
are common responses to temperature extremes, enabling land snails
to survive under unfavorable environmental conditions such as cold
and frost, or heat and drought (Storey and Storey, 1990, 2004, 2010;
Guppy and Withers, 1999). Nevertheless, these physiological and
behavioral responses can differ greatly between populations
inhabiting different climatic environments (Schweizer et al., 2019).

One of the hallmark responses and measures of thermal sensitivity
to changes in ambient temperature is heat shock protein (Hsp)
induction (Hofmann, 2005; Gerber et al., 2016). Hsps stabilize and/
or refold proteins against denaturing stresses (Tomanek, 2010)
and, thus, they are ecologically and evolutionarily important in
thermal adaptation, setting thermal tolerance limits and improving
animal tolerance of thermal stress (Feder and Hofmann, 1999;
Serensen et al., 2003; Tomanek, 2010). Organisms occupying
extreme environments can employ a ‘preparative defense’ strategy
by maintaining high constitutive levels of Hsps as a protection
mechanism against periods of extreme and/or unpredictable stress
events, including temperature extremes or oxidative stress (Somero,
2020).

‘Preparation for oxidative stress’ (POS) (Hermes-Lima and Storey,
1995; Hermes-Lima et al., 1998, 2015; Ramos-Vasconcelos and
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Hermes-Lima, 2003; Nowakowska et al., 2010, 2011) implies that
land snails are prepared in a hormetic way to defend themselves
against reactive oxygen species (ROS) production and oxidative
stress during reoxygenation when they arouse from metabolic
depression (estivation or hibernation) (Nowakowska et al., 2014;
Oliveira et al., 2018). This further supports the interrelationship
between Hsps and oxidative stress in several snail species under
thermal stress (Mizrahi et al., 2010, 2012a,b; Scheil et al., 2011;
Dieterich et al., 2013; Troschinski et al., 2014). Similarly, recovery
from winter hibernation causes increased oxidative stress and Hsp
expression in water frogs, thus stimulating an elevation of effective
organ antioxidant defenses (Hermes-Lima and Storey, 1996;
Hermes-Lima et al., 1998; Bagnyukova et al., 2003; Feidantsis
et al., 2012a).

Land snail Helix lucorum Linnaeus 1758 populations have been
found in Greece’s northern part (Staikou et al., 1988) between sea
level, 0 m, and up to 1300 m in continental mountainous habitats
(Paiko mountain and Olympus mountain; A.S., K.F., M.H. and B.M.,
personal observations). This altitudinal difference results in particular
climatic types. Sea-level populations cope with high temperatures and
summers with severe drought, whereas mountain populations are
confronted with temperatures below 0°C for long periods of the year,
whereas high temperatures, favoring their growth and reproduction,
last only from late spring to summer and early autumn. Several studies
conducted in Mediterranean-type climates suggest that summer
drought, in combination with high temperatures, shapes the activity
cycles and metabolic responses of land snail populations (Michaelidis
and Pardalidis, 1994; Michaelidis et al., 2008; Kotsakiozi et al.,
2012). However, little is known regarding seasonal patterns of the
above-mentioned stress phenomena and phenotypic plasticity in land
snails from populations with different vertical distributions. The
present study aimed to study seasonal cellular stress phenomena
in two native populations of H. lucorum from different altitudes,
one from the Axios area (sea level, 0 m) and the other from
Kokkinopilos (Olympus Mountain, 1250 m). We analyzed Hsp70
and Hsp90 expression. As members of the mitogen activated protein
kinase (MAPK) family are involved in Hsp expression (Sheikh-
Hamad etal., 1998; Uchara et al., 1999; Rafiee et al., 2003; Feidantsis
etal., 2012b) and are modulators of other cellular processes including
gene expression related to oxidative stress (Oliveira et al., 2018),
we also assessed p38 MAPK, JNK and p44/42 MAPK
phosphorylation. Anti-apoptotic and ubiquitination responses were
also investigated in an effort to relate the heat shock response (HSR)
to a potential risk of apoptosis (Gerber et al., 2016; Hoyeck et al.,
2019). Ubiquitination regulates protein degradation, apoptosis,
autophagy and cell cycle progression (Orlowski, 1999; Bader and
Steller, 2009). Moreover, groups of native populations were
reciprocally transplanted to the other test site in order to examine
how phenotypic plasticity in cellular stress responses is modulated in
populations as a result of the altitudinal gradient. Although
transplantation experiments have been conducted in marine
organisms (e.g. Bams, 1976; Beaumont et al., 1993, Cochard and
Devauchelle, 1993; Mackie and Ansell, 1993; Riveros et al., 2002), to
our knowledge this is the first study regarding a land species.

MATERIALS AND METHODS

Chemicals

All biochemicals were purchased from Sigma (Darmstadt, Germany),
Cell Signaling (Beverly, MA, USA) and Bio-Rad (Hercules, CA,
USA). All other chemicals were obtained from Sigma, Merck
(Darmstadt, Germany) and Applichem (Gatersleben, Germany) and
were of analytical grade.

Animals and experimental procedures

Adult snails were collected in early October 2018 from two native
populations of H. lucorum, living at different altitudes, one from
the Axios (henceforth referred as ‘coast’) area (sea level, 0 m;
40.73923, 22.66075) and the other from Kokkinopilos (henceforth
referred as ‘mountain’) (Olympus Mountain, 1250 m; 40.09548,
22.25245). Each population was separated into two groups. One
group from each population remained in its original habitat,
whereas the second group was reciprocally transplanted (Axios
to Kokkinopilos and Kokkinopilos to Axios). Both native and
reciprocally transplanted populations were maintained in wire cages,
established at the natural habitat of the snail population, which
contained plants usually consumed by snails; surplus food was
always available. The cages were immersed in the soil and covered
with wide plastic mesh (mesh size 2 cm) to prevent snails from
escaping, and at the same time to maintain the surrounding
environmental conditions inside the cages. However, a slight
temperature increase inside the cages, although unlikely, cannot
be completely excluded. The cages were separated into two
compartments, one for the native population and the second for the
transplanted snails. Each compartment of each cage measured
1.5x1x1 m® (lengthxwidthxheight) and contained ~100
individuals, a density similar to that usually observed in natural
populations of the species and that would not cause adult mortality
(Staikou and Lazaridou-Dimitriadou, 1989) (Fig. 1). Snails were
both naturally and additionally fed with commercial vegetables and
their activity was recorded at regular intervals throughout the year.
Transplanted groups were acclimatized for 15-20 days in their new
habitat (the coast group to mountain conditions, and the mountain
group to the coast conditions) before the beginning of sampling. A
total of seven samples were taken throughout one year, starting from
mid-November 2018 and ending in mid-October 2019. At each
sampling occasion, 8—10 individuals were removed from each of the
four groups. Samples from hepatopancreas and foot muscle were
quickly removed, immediately frozen in liquid nitrogen and then
transferred at —80°C to the laboratory for biochemical analysis.
Meteorological data for both regions were obtained from the
Department of Meteorology and Climatology (sea level, 0 m),
School of Geology, Aristotle University of Thessaloniki.

Analytical procedures

SDS-PAGE and immunoblot analysis

The preparation of tissue samples for SDS-PAGE and immunoblot
analysis are based on well-established protocols. Specifically, in the
present study, equivalent amounts of protein (50 pug) were separated
on slab gels containing 10% (w/v) acrylamide and 0.275%
(w/v) bisacrylamide or 15% (w/v) acrylamide and 0.33% (W/v)
bisacrylamide, respectively (depending on the molecular weight
of the proteins to be detected) and subsequently transferred
electrophoretically onto nitrocellulose membranes (0.45 um;
Schleicher and Schuell, Keene, NH, USA). All nitrocellulose
membranes were dyed with Ponceau stain in order to ensure good
transfer quality and equal protein loading. Subsequently, the
membranes were incubated overnight with the appropriate primary
antibodies: monoclonal mouse anti-heat shock protein, 70 kDa (cat.
no. H5147, Sigma); monoclonal mouse anti-heat shock protein,
90 kDa (cat. no. H1775, Sigma); monoclonal rabbit anti-phospho
p44/42 MAPK (Thr202/Tyr204) (cat. no. 4376, Cell Signaling
Technology); polyclonal rabbit anti-phospho-p38 MAP kinase
(Thr180-Tyr182) (cat. no. 9211, Cell Signaling Technology);
monoclonal mouse anti-phospho-SAPK-JNK (Thr183-Tyr185)
(Cell Signaling Technology); and polyclonal rabbit anti-bcl2 (cat.
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Fig. 1. Helix lucorum study populations. Top: two native and two reciprocally transplanted populations of H. lucorum were settled at Axios (0 m, coast) and |
Kokkinopilos (1250 m, mountain) in cages for a year. Bottom: mean monthly ambient temperature (with the mean monthly temperature range in parentheses) and

snail activity recorded monthly at (A) Kokkinopilos and (B) Axios.

no. 7973, Abcam, Cambridge, MA, USA). Antibodies were diluted
as recommended by the manufacturer’s guidelines. After washing in
TBST (3 times, 5min each), the blots were incubated with
horseradish peroxidase-linked secondary antibodies (Anti-rabbit
IgG, HRP-linked Antibody, cat. no. 7074, and anti-mouse IgG,
HRP-linked Antibody, cat. no. 7076, Cell Signaling Technology),
washed again in TBST (3 times, 5 min each), and the bands detected
using enhanced chemiluminescence (Chemicon) with exposure to
Fuji Medical X-ray films. Films were quantified by laser-scanning
densitometry (GelPro Analyzer Software, GraphPad).

Quantitative immunochemical assay for ubiquitin conjugates
Quantification of ubiquitinated proteins was assessed following
a solid-phase immunochemical assay as described by Feidantsis et al.

(2015). The antibody used was polyclonal anti-ubiquitin
rabbit antibody (cat. no. 3936, Cell Signaling Technology). After
washing in TBST (3 times, 5 min each), the blots were incubated with
horseradish peroxidase-linked secondary antibody (Anti-mouse IgG,
HRP-linked Antibody, cat. no. 7076, Cell Signaling Technology),
washed again in TBST (3 times, 5 min each), and the bands detected
using enhanced chemiluminescence (Chemicon) with exposure to
Fuji Medical X-ray films. Films were quantified by laser-scanning
densitometry (GelPro Analyzer Software, GraphPad).

Morphometric characteristics

At each sampling occasion, 8—10 individuals were removed from
each of the four groups, and from each individual, measurements of
diameter (D), height (H), shell and body weight [W (S+B)] and
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body weight [W(B)] were recorded (Table S1). Additionally, snail
behavior was visually monitored and recorded.

Statistics

General linear model ANOVA (GLM) (independent variables:
population of origin, experimental site and time) and one-way
ANOVA were performed to detect significant differences at 5%
(P<0.05) probability level (SPSS Scientific Inc. Software, version
21). GLM analysis was annually and also semiannually (periods
November—February, and March—October) performed in order to
examine in detail the effect of season.

Principal component analysis (PCA) in the FactoMineR package
in R was employed to assess patterns of possibly correlated
variables, and more specifically to detect how cellular stress
responses varied between temperatures, samplings and populations.

RESULTS

Air temperature, behavioral characteristics and
morphometric parameters of the study populations

Seasonal mean monthly air temperature variations are shown in
Fig. 1. A gradual decrease was observed from November to
February, when the lowest mean temperature (1°C) was recorded in
the mountain (Fig. 1A). Air temperature increased gradually after
March and reached the highest mean value in mid-July (17.6°C). At
the coast (Fig. 1B), temperature decreased from November to
January (5.2°C). Thereafter, temperature rose again in March until
the highest mean temperatures were recorded between the end of
July and early August (28.2°C).

According to our field observations, native H. lucorum snails in
the mountain started burying into the soil and forming a thick
epiphragm in the middle of October and began to arouse in mid-
April (Fig. 1A). For coast individuals moved to mountain, an
epiphragm was observed a bit later, at the beginning of November,
and they also started to bury into the soil for hibernation. These
individuals also showed arousal from hibernation after March.
Native mountain snails were active throughout the rest of the year
and reproduced in the middle of summer to the beginning of autumn
(Fig. 1A). In contrast, native coast snails reproduced just after exit
from hibernation in spring and entered estivation in the summer
(Fig. 1B).

Seasonal HSR

Hsp70 levels in H. lucorum hepatopancreas followed a similar
pattern to that of temperature and were higher in the coast population
compared with corresponding levels in the mountain population
(Fig. 2A,B). The pattern of Hsp70 levels in the coast population
transplanted to high altitude was not similar to that exhibited by the
coast population (Fig. 2C). When individuals from the mountain
were transplanted to the coast, Hsp70 levels were found to be higher
than the corresponding ones in the native population, and a gradual
increase was observed by mid-February, remaining through March
(Fig. 2D).

In contrast to findings for individuals from the mountain
population, Hsp70 levels, after an initial decrease from November
to December, remained stable in the foot throughout the year despite
temperature fluctuations (Fig. 2G,H). When the coast population
was transplanted to the mountain, it exhibited fairly similar changes
in Hsp70 levels to those of the coast population. However, the levels
of the transplanted population were higher than those of the native
one except for July and October, when they dropped significantly
below coast levels (Fig. 2I). Different patterns from those of the
native population were also exhibited when individuals from the

mountain were transplanted to the coast (Fig. 2J). After arousal early
in March, Hsp70 levels recovered to those measured in November in
the native coast population (Fig. 2H). In contrast, in the native
mountain population, the corresponding levels increased beyond the
levels determined in November, early in July (Fig. 2H).

In contrast to Hsp70, differences determined in hepatopancreas
Hsp90 levels between the two native populations were smaller and
fewer (Fig. 3A,B). Until February, the two populations showed a
different pattern of changes, with Hsp90 levels in the coast
population increasing and those in the mountain one decreasing, but
rose in both populations later in the year. Fig. 3C shows that Hsp90
levels were constant for both groups from November to February.
Thereafter, an increase in Hsp90 levels was observed in the coast
snails that were transplanted to the mountain that may be due to
winter cold stress but levels declined again with the arrival of spring.
The coast group showed elevated Hsp90 levels in July, which
remained high through October, whereas the coast snails
transplanted to the mountain did not. In March, Hsp90 levels of
the transplanted population were higher compared with those of the
native population (Fig. 3C). In mountain, and mountain to coast
transplanted populations, Hsp90 levels followed temperature
changes. However, in October, the native population exhibited
significantly higher levels compared with the transplanted one
(Fig. 3D).

In the foot of the coast population, Hsp90 levels increased with
environmental temperature increases, while in the mountain
population, they sharply increased with the initial temperature rise
(Fig. 3G,H). Overall, Hsp90 levels in the foot were significantly
higher for the coast population. For coast to mountain transplanted
snails, the initial decrease in environmental temperature resulted in a
strong initial increase in Hsp90 compared with the coast population
(Fig. 3I). A similar pattern was observed for mountain, and
mountain to coast transplanted populations (Fig. 3J). The initial
movement to the warmer environment led to a much higher Hsp90
content in the mountain group that was transplanted to the coast in
November/December but in the warmer seasons, Hsp90 levels in the
two populations were fairly similar to each other (Fig. 3J). This is
also supported by the reciprocal transplantation experiments
showing that coast individuals did not upregulate Hsp90 during
summer when transplanted to high altitude (Fig. 31).

Seasonal MAPK activation

In the hepatopancreas of the coast population, phospho-p38 MAPK
content declined in February and increased in the spring months.
Thereafter, it exhibited a declining trend from May through to
October. By contrast, the mountain population showed the highest
phospho-p38 MAPK content in both December and May, and in
general levels were significantly higher compared with the coast
population (Fig. 4A,B). p38 MAPK phosphorylation in the coast
population transplanted to the mountain was significantly higher in
November and October, but lower in March to May, compared with
the coast population (Fig. 4C,F). For the mountain population
transplanted to low altitude, p38 MAPK activation levels were
generally lower, compared with those of the mountain population
(Fig. 4D,E).

In the foot of both native populations, after a significant increase
in December, p38 MAPK phosphorylation was maintained at
relatively low levels in the cold months but thereafter peaked in the
warmer months, coinciding with snail arousal from hibernation
and activity. Overall, the mountain population exhibited higher
phosphorylated levels compared with the coast population, although
the opposite was observed during October (Fig. 4G,H). The coast
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Fig. 2. Seasonal variation in Hsp70 levels in hepatopancreas (top) and foot (bottom) of H. lucorum from two native and two reciprocally transplanted
populations. (A,G) Representative immunoblots of Hsp70 in populations of snails at the two study sites (Axios, A, coast; and Kokkinopilos, K, mountain),
and transplanted between the sites as indicated. (B—L) Comparisons are presented between populations at Axios and Kokkinopilos (B,H), Axios and
Axios—Kokkinopilos (C,l), Kokkinopilos and Kokkinopilos—Axios (D,J), Axios and Kokkinopilos—Axios (E,K) and Kokkinopilos and Axios—Kokkinopilos
(F,L). Values are meanszs.d.; n=8. Lowercase letters indicate significant differences between samplings of the same population (P<0.05); *significant difference
from November; ¥significant difference between samplings from the two populations.

population transplanted to the mountain exhibited higher levels of
phospho-p38 MAPK compared with native one. After an initial
decrease during the subsequent 2 months, levels increased again
in March, remaining high by May. In contrast to the native
population, however, p38 MAPK phosphorylation levels declined
during seasonal warming (Fig. 4LL). In contrast, the mountain
population transplanted to the coast exhibited higher p38 MAPK

phosphorylation from November to February, and after a sharp
decrease in March remained at relatively high levels during seasonal
warming (Fig. 4J,K).

p44/42 MAPK phosphorylation in the hepatopancreas of the native
populations initially declined in December/February for coast snails
but increased in mountain snails in December (Fig. SA,B). Levels in
both populations were low in February (hibernation period), peaked
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Fig. 3. Seasonal variation in Hsp90 levels in hepatopancreas (top) and foot (bottom) of H. lucorum from two native and two reciprocally transplanted
populations. (A,G) Representative immunoblots of Hsp90 in populations of snails at the two study sites (Axios, A, coast; and Kokkinopilos, K, mountain), and
transplanted between the sites as indicated. (B—L) Comparisons are presented between populations at Axios and Kokkinopilos (B,H), Axios and

Axios—Kokkinopilos (C,l), Kokkinopilos and Kokkinopilos—Axios (D,J), Axios and Kokkinopilos—Axios (E,K) and Kokkinopilos and Axios—Kokkinopilos (F,L).
Values are meanszs.d.; n=8. Lowercase letters indicate significant differences between samplings of the same population (P<0.05); *significant difference from

November; ¥significant difference between samplings from the two populations.

in March (arousal and activation), and decreased through to July
(estivation). p44/42 MAPK phosphorylation levels in May and July
were significantly higher in the coast population compared with that
of the mountain population. For the coast native population
transplanted to the mountain, the temperature decrease during
winter provoked a reduction in p44/42 MAPK phosphorylation
until February and then an increase in March (Fig. S5C,F). p44/42

MAPK phosphorylation in the mountain population transplanted to
the coast seemed to follow the same pattern of changes as those
observed for the native coast population (Fig. 5D,E).

In the foot of both native populations, p44/42 MAPK
phosphorylation was maintained at low levels during the cold
months. Thereafter, during snail arousal, phosphorylation levels
increased significantly, with the coast population exhibiting
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Fig. 4. Seasonal variation in p38 MAPK phosphorylation levels in hepatopancreas (top) and foot (bottom) of H. lucorum from two native and two
reciprocally transplanted populations. (A,G) Representative immunoblots of phosphorylated p38 MAPK in populations of snails at the two study sites (Axios, A,
coast; and Kokkinopilos, K, mountain), and transplanted between the sites as indicated. (B—L) Comparisons are presented between populations at Axios and
Kokkinopilos (B,H), Axios and Axios—Kokkinopilos (C,l), Kokkinopilos and Kokkinopilos—Axios (D,J), Axios and Kokkinopilos—Axios (E,K) and Kokkinopilos
and Axios—Kokkinopilos (F,L). Values are meansts.d.; n=8. Lowercase letters indicate significant differences between samplings of the same population
(P<0.05); *significant difference from November; ¥significant difference between samplings from the two populations.

comparatively higher levels of phosphorylation, which peaked in
May (Fig. 5G,H). When the native coast population was
transplanted to the mountain, it maintained levels of p44/42
MAPK phosphorylation similar to those determined for the native
mountain population, and same pattern of seasonal changes (Fig. 51,
L). In contrast, a different pattern was observed for the mountain
population compared with the mountain population transplanted to

the coast, with the latter exhibiting higher levels in December and
May (Fig. 5J.,K).

JNK phosphorylation in the hepatopancreas of the coast population
increased significantly only in March, and gradually declined after
May. However, in the mountain population, highest levels were
observed in December (hibernation), and in March (arousal and
activity) (Fig. 6A,B). In general, JNK phosphorylation was higher in
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the coast population compared with the mountain one. The coast
population transplanted to the mountain showed seasonal changes by
March similar to those observed to the native one. Thereafter, and after
a sharp decrease in May, JNK phosphorylation recovered to levels of
the coast population (Fig. 6C,F). When the mountain population was
transplanted to the coast, the pattern of JNK phosphorylation was
similar to that observed for the coast population (Fig. 6D,E).

Regarding the foot of both native populations, JNK
phosphorylation was maintained at low levels over the cold
months but increased as temperatures rose, coinciding
with snail arousal from hibernation and activity (Fig. 6G,H).
However, JNK phosphorylation levels were generally higher in
the coast population. Whereas JNK phosphorylation followed
an similar increasing pattern in both the coast population and the
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Fig. 6. Seasonal variation in JNK phosphorylation levels in hepatopancreas (top) and foot (bottom) of H. lucorum from two native and two reciprocally
transplanted populations. (A,G) Representative immunoblots of phosphorylated JNK in populations of snails at the two study sites (Axios, A, coast; and

Kokkinopilos, K, mountain), and transplanted between the sites as indicated. (B—|

L) Comparisons are presented between populations at Axios and Kokkinopilos

(B,H), Axios and Axios—Kokkinopilos (C,l), Kokkinopilos and Kokkinopilos—Axios (D,J), Axios and Kokkinopilos—Axios (E,K) and Kokkinopilos and
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*significant difference from November; ¥significant difference between samplings from the two populations.

coast population transplanted to the mountain, levels of the
transplanted population dropped significantly after May, whereas
those in the native population remained high (Fig. 6L.L). The
mountain population and the mountain population transplanted to
the coast exhibited a similar pattern of JNK phosphorylation, with
levels increasing in May and thereafter decreasing. However, the
transplanted population exhibited higher levels compared with the
mountain population (Fig. 6J,K).

Seasonal ubiquitination

In general, ubiquitin conjugate levels were higher in the
hepatopancreas of the coast population compared with those of
the mountain population (Fig. 7A,B). Compared with the coast,
however, ubiquitin conjugates remained at low levels by July in the
mountain population, thereafter increasing by October. In contrast,
they decreased significantly by February in the coast population, but
recovered to November levels by May, declining during estivation
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(July—October). However, ubiquitination decreased significantly
when the coast population was transplanted to the mountain
(Fig. 7C) and it fluctuated at low levels similar to those determined
for the mountain population (Fig. 7F). When the mountain
population was transplanted to cost, the snails exhibited changes
in ubiquitin conjugates similar to those observed for the coast
population (Fig. 7D,E).

In contrast to findings for the hepatopancreas, foot ubiquitin
conjugates were similar for the populations during the first months
(Fig. 7G,H). Thereafter, ubiquitin conjugates increased from
February to March in the coast population, remaining at high
levels by July, and declining by October. Such an increase
was observed in the mountain population, which 2 months later
followed the same pattern of changes as those of the coast
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population (Fig. 7H). However, when the coast population was
transplanted to the mountain, ubiquitin conjugates increased
after March and remained at high levels to October (Fig. 7LL).
Compared with the mountain population, the mountain population
transplanted to coast exhibited higher levels in November to
February, while the opposite was observed from May to July
(Fig. 7J,K).

Seasonal Bcl-2 patterns

In general, Bcl-2 levels were higher in the hepatopancreas of the
coast population compared with the mountain one. After an initial
decrease in hepatopancreas Bcl-2 levels in December and February,
when coast snails hibernate, Bcl-2 levels increased during activity
and estivation in March and July, respectively. In contrast, in the
mountain population, Bcl-2 levels initially decreased between
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Fig. 8. Seasonal variation in Bcl-2 levels in hepatopancreas (top) and foot (bottom) of H. lucorum from two native and two reciprocally transplanted
populations. (A,G) Representative immunoblots of Bcl-2 in populations of snails at the two study sites (Axios, A, coast; and Kokkinopilos, K, mountain), and
transplanted between the sites as indicated. (B—L) Comparisons are presented between populations at Axios and Kokkinopilos (B,H), Axios and
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Values are meansts.d.; n=8. Lowercase letters indicate significant differences between samplings of the same population (P<0.05); *significant difference from
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Table 1. Percentage variation of snail biochemical responses according to population of origin, experimental site and time, and interactions

between these variables

Population of Population of

Tissue sample Population of origin Experimental site Time originxexperimental site originxtime
Hsp70 Hepatopancreas 24.35 16.32 16.35 22.34 21.54
Foot 29.67 13.46 14.55 25.68 16.64
Hsp90 Hepatopancreas 30.22 11.76 11.22 26.47 20.33
Foot 19.78 16.78 16.55 21.88 25.01
Phospho-p38 MAPK Hepatopancreas 18.78 16.78 15.33 19.89 29.22
Foot 16.72 21.33 22.34 18.98 20.63
Phospho-p44/42 MAPK Hepatopancreas 16.71 16.99 21.01 21.88 23.41
Foot 16.77 17.81 21.33 22.44 21.65
Phospho-JNK Hepatopancreas 17.88 19.99 21.33 21.55 17.74
Foot 31.22 17.01 15.66 17.88 18.23
Ubiquitin Hepatopancreas 22.33 18.78 16.55 21.65 20.69
Foot 34.55 13.2 12.34 29.98 9.93
Bcl-2 Hepatopancreas 28.77 14.22 14.56 28.9 13.55
Foot 16.78 18.91 22.31 19.88 2212

November and February, but rose again during arousal in March and
remained elevated (Fig. 8A,B). While individuals from the coast
population and the coast population transplanted to the mountain
exhibited a similar Bcl-2 pattern from November to May, the latter
population exhibited a decreasing trend (Fig. 8C,F). However, when
mountain population was transplanted to the coast, the snails
exhibited higher levels of Bcl-2 and a marked increase after arousal,
in early March (Fig. 8AD,E).

Similar to findings in the hepatopancreas, higher levels of Bcl-2
were determined in the foot of the coast population compared with the
mountain one (Fig. 8G,H). For the coast population, Bcl-2 levels
increased significantly as ambient temperature dropped until February.
With warming spring temperatures, Bcl-2 increased during arousal,
remaining at high levels in July and declining thereafter by October.
Although Bcl-2 levels exhibited a gradual increase in the mountain
population, they remained at markedly lower levels throughout the
year compared with those of the coast population. In contrast,
compared with the native population, Bcl-2 levels were higher in
November in the transplanted coast population and, apart from a
decrease in March and October, remained at the same levels (Fig. 81,
L). Bcl-2 levels did not change significantly even when the mountain
population was transplanted to the coast (Fig. 8J,K).

Contribution of variables to biochemical responses

Table 1 depicts the percentage variation of the examined
biochemical responses explained by each variable and interactions
between variables. Splitting our dataset in two semiannual groups
revealed no significant differentiation of the obtained results in
relation to the initial annual results (data not shown). Table 2
exhibits the overall effect of all variables and their interactions. All
variables (population of origin, experimental site and time) and
interactions between variables (population of originxexperimental
site, and population of originxtime) were statistically significant.

Table 2. Results of general linear model (GLM) ANOVA analyses

df. Type Il SS F P
Population of origin 3 0.345 5.167 0.012*
Experimental site 3 0.203 4123 0.023*
Time 3 0.422 6.552 0.005*
Population of 3 0.195 2.331 0.031*
origin x experimental site
Population of origin x time 3 0.302 4.766 0.017*

*Statistically significant effect.

Multivariate analysis reveals strong seasonal correlations
with cellular stress responses

PC1 explained 36.33% of the variance. The physiological variables
that were positively correlated with PC1 scores were p38 MAPK,
JNK and p44/42 MAPK with ubiquitin conjugates in the
hepatopancreas, forming clusters with habitats and seasons at: the
coast in March, the mountain in March and May, the mountain to
coast in October, March and May. Bcl-2 and both Hsps in the
hepatopancreas form clusters in the coast to mountain in March and
in the coast in May. The physiological variables that were positively
correlated with scores on PC2, which explained 20.01% of
the variance, were one cluster with MAPKs and Bcl-2 in the
hepatopancreas at the coast in October and July, and Hsps at the
coast to mountain in October, and the mountain to coast in
December. The cumulative value of PC1 and PC2 was 56.34%

(Fig. 9).

DISCUSSION

Air temperature patterns show clear seasonal differences between
the two sampling locations. The much lower temperatures of the
mountain compared with the coast are reflected in the snails’
behavioral strategies from the corresponding populations as far as
entrance/arousal from hibernation or estivation is concerned. It is
clear that mountain snails face annual cold challenges whereas coast
snails deal mainly with warm challenges. These differences in the
two habitats are reflected in the seasonal patterns of the proteins
examined in the present study, indicating major differences in
biochemical and physiological responses in order to cope with cold
or warm challenges. Specifically, the data obtained in the present
study, show clear seasonal patterns in Hsp expression (Figs 2 and 3),
MAPK phosphorylation (p38 MAPK, p44/42 MAPK and JNK;
Figs 4, 5 and 6, respectively), apoptosis-related Bel-2 (Fig. 7) and
ubiquitin conjugates (Fig. 8) in H. lucorum from the low and high
altitude populations. These patterns seem to be closely related to H.
lucorum population habitat and thermal history. As depicted in
Table 2, according to the GLM analysis, the effect of all factorial
parameters measured herein is significant in snail physiological
performance.

Seasonal patterns of Hsp expression

Compared with individuals from the mountain, coast individuals
maintained relatively high Hsp70 constitutive levels (Fig. 2A—C,E,
G-1,K), indicating that species adapted to higher temperature niches
were more heat tolerant and showed higher upper thermal limits
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4 -2 0 2 4 Fig. 9. Variable correlations with each of the first two
- - - - - principal components (PCs) in the multivariate analysis. The
Axios—Kokkinopilos_May principal components analysis (PCA) was generated from the
complete biochemical dataset. Parameters with red vector
0.4 arrows were included as PCA construction predictors.
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of protein (including Hsp) synthesis (Tomanek and Somero, 1999;
Mizrahi et al., 2010, 2012a,b; Kotsakiozi et al., 2015). This
adjustment of Hsp expression due to long-term acclimation to
environmental temperature has also been shown in Drosophila
melanogaster (Bettencourt et al., 1999). Organisms occupying
extreme and unpredictable environments use a ‘preparative defense’
strategy involving maintenance of high Hsp constitutive levels
(Somero, 2020), thus allowing an immediate response to the
potentially damaging effects of heat stress. This response would be
much more rapid than that required for de novo Hsp production
(Serensen et al., 2003).

During entrance into hibernation, Hsp70 levels decreased
significantly, but only in the coast population. As Hsp maintenance
at high levels is costly, we suggest that it is an energy-saving strategy
during hibernation and winter hypometabolism (November to
December). By contrast, mountain snails generally showed lower
but constant Hsp70 levels throughout the winter months, compared
with coast snails, indicating a reduced need for Hsp action. Another
significant difference between the two populations was observed
during the snails’ preparation for arousal, which is characterized
by metabolic reorganization and gradual reactivation of several
physiological processes, including heart rate and respiration (Storey
and Storey, 1990). Preparation for arousal started after December in
the coast population, and after February in the mountain population
(<0°C). After arousal, snail activity was observed early in March
for the coast population and early in April for the mountain
population. In both cases, snails face the impacts of ROS
accumulation resulting from intense reoxygenation (Hermes-Lima
et al., 1998, 2015). Accordingly, the Hsp70 increase during arousal
is in agreement with the POS defense hypothesis. In the aestivating
land snail species Otala lactea, lipid peroxidation, indicating
oxidative stress and tissue damage, was significantly enhanced in
the hepatopancreas at the onset of arousal from dormancy.

Antioxidant enzyme activity was higher in the hepatopancreas
and foot muscle of aestivating snails than in active snails (Hermes-
Lima and Storey, 1995). Similar results were found in the land snail
Cornu aspersum during experimental estivation and arousal cycles
(Ramos-Vasconcelos and Hermes-Lima, 2003). Overall, POS is a
well-documented phenomenon related to snail arousal (Hermes-
Lima and Storey, 1995, 1996; Hermes-Lima et al., 1998; Ramos-
Vasconcelos and Hermes-Lima, 2003; Nowakowska et al., 2010,
2011, 2015). This further supports the interrelationship between
Hsp expression and oxidative stress in several snail species under
thermal stress (Mizrahi et al., 2010, 2012a,b; Scheil et al., 2011;
Dieterich et al., 2013; Troschinski et al., 2014).

As coast individuals experience higher temperatures at low
altitude, their recovered Hsp70 levels after arousal (early March)
could serve as a preparatory strategy in order to defend against
high temperature impacts, whereas there is a need for further
upregulation of the stress protein machinery for the mountain
population. The latter is supported by the fact that Hsp70 levels in
mountain snails tend to reach close to those of coast snails in the
summer. Such a phenotypic response is further supported by the
reciprocal transplantation experiments, where there was no Hsp70
upregulation when individuals from the coast were transplanted to
the mountain (Fig. 2C,F,ILL), whereas those transplanted from the
mountain to the coast exhibited further Hsp70 upregulation at the
coast (Fig. 2D,E,J,K).

As coast snails face intense thermal challenges during summer, a
second phase of Hsp70 upregulation, which is in line with the POS
defense hypothesis, was observed in July mainly. In contrast to
mountain snails, they enter the hypometabolic state of estivation
during summer and are reactivated early in September when
conditions become favorable again. Moreover, the data obtained
from the reciprocal transplantation clearly show phenotypic Hsp70
expression plasticity and indicate that the coast thermal regime

13

>
(@)}
i
je
(2]
©
o+
c
(]
£
=
()
o
x
NN
Y—
(©)
©
c
e
>
(®)
_




RESEARCH ARTICLE

Journal of Experimental Biology (2021) 224, jeb243298. doi:10.1242/jeb.243298

determines Hsp70 expression patterns. Specifically, when snails
from the coast were transplanted to the mountain, there was no
further increase in Hsp70 expression in the hepatopancreas after
May (Fig. 2C,F), but when individuals from the mountain were
transplanted to the coast, a strong Hsp70 upregulation occurred
which increased to higher levels than those in the native population
(Fig. 2D,E). Probably the stress levels needed to induce Hsp
synthesis are directly related to the habitat of the organism under
study (Feder and Hofmann, 1999; Kotsakiozi et al., 2015).

Compared with findings in the hepatopancreas, our results
indicated a different seasonal role of Hsp70 and probably less
demand for molecular chaperoning in the foot. Hsp70 levels, after
an initial drop from November to December in the coast population
and after an initial increase in the mountain population, were
maintained at an even level to July (Fig. 2H). These results, also
observed after reciprocal transplantation (Fig. 2I-L), indicate that
Hsp70 steady levels are maintained in the foot in both populations
over the largest part of year.

In contrast to Hsp70, Hsp90 resting levels were similar in the
hepatopancreas of the two native populations. While they showed an
opposite direction of change during the hibernation months, from
February onwards a gradual increase in coast snail Hsp90 levels and
maintenance of levels in mountain snails was exhibited (Fig. 3B).
These differential responses are probably related to specific cellular
and physiological processes during and after overwintering,
especially warm season effects at the coast. This is supported by
the significant increase in Hsp90 levels from May to July in the
coast population.

The seasonal changes in Hsp90 levels in the foot from coast and
mountain snails indicate a similar pattern and probably similar
physiological role to the hepatopancreas during and after
overwintering (Fig. 3H-L). An increase in Hsp90 during cooling
might be related to cold hardiness when snails face low or subzero
temperatures and is seen only among mountain snails. Habitat and
body size may be involved in freeze tolerance in several land snail
species (Ansart and Vernon, 2003, 2004; Ansart et al., 2010).
Phenotypic responses during cooling involve transcriptional processes
resulting in Hsp expression and metabolic reorganization, leading to
cell preservation in freeze-tolerant animals (Zhang et al., 2018; Des
Marteaux et al., 2019; Storey and Storey, 2019). However, Hsps,
and especially Hsp90, may play an important role in osmoregulation
during estivation (Mizrahi et al., 2010, 2015; Arad et al., 2010).
Coast individuals face desiccation challenges, as they enter
estivation during summer. Accordingly, further upregulation of
Hsp90 and maintenance in H. lucorum tissues from the coast during
summer, and Hsp90 maintenance in coast individuals transplanted
to the mountain, seem to be in agreement with this hypothesis
(Fig. 3H-L). However, except for oxidative stress, several factors,
such as increased protein synthesis accompanying arousal and the
shift to growth, reproductive and behavioral processes, are involved
in Hsp regulation. Moreover, morphological divergence (e.g. shell
color diversity) between populations of the same species indicates
that different Hsp expression patterns can occur (Kohler et al., 2009;
Mizrahi et al., 2010, 2015; Dieterich et al., 2013; Di Lellis et al.,
2012).

Seasonal patterns of MAPK activation

MAPK activation plays a crucial cytoprotection role by mediating a
vast number of cellular responses including gene transcription,
cytoskeletal organization, metabolite homeostasis, cell growth and
apoptosis in response to many different extracellular signals
(Kyriakis and Avruch, 1996, 2001; Cowan and Storey, 2003).

MAPKSs are characterized as cellular sensors because they transduce
external signals into cellular responses. MAPK levels in H. lucorum
showed distinct seasonal periods and were tissue specific
(Figs 4-6). Activation of all MAPKs exhibited two major peaks
in the hepatopancreas of mountain snails, one in December and the
second from mid-March to early May (Figs 4B, 5B and 6B). The
first phase of activation coincides with the hibernation and
hypometabolism period. In line with these data, our previous
investigation showed that hibernation caused significant increases
in JNK and p38 MAPK phosphorylation in H. lucorum heart and
ganglia (Michaelidis et al., 2008). The mountain population,
compared with the coast population, faces subzero temperatures
during winter and the reciprocal transplantation shows clearly that
subzero temperature is a strong environmental factor triggering
MAPK activation. We do not know whether MAPKSs are activated
below a threshold low temperature. However, it is indicated that
under such thermal threats (subzero temperatures) the phenotypic
plasticity of the MAPK signaling cascade might contribute to
physiological and biochemical remodeling and cell protection in
land snail tissues.

Signal transduction pathways and their regulatory effects on gene
expression have been shown to be pivotal in meeting challenges
associated with hibernation in ground squirrels and bats (Cowan and
Storey, 2003; Mamady and Storey, 2006; Morin et al., 2008; Wu
et al., 2013). Biggar et al. (2015) reported that each MAPK
subfamily responded differently during torpor and each showed
organ- and tissue-specific patterns of response. It has been reported
that phosphorylated p38 MAPK could trigger the expression of
numerous downstream genes, which encode products that protect
the whitefly from adverse cold stress effects or elicit rapid cold
hardening (Iwata et al., 2005; Fujiwara and Denlinger, 2007).
Greenway and Storey (1999, 2000) suggested specific roles for p44/
42 MAPK and p38 MAPK in response to freezing or anoxia in frogs
and turtles.

The second phase of MAPK activation coincides well with
arousal and it takes place in both the hepatopancreas and foot,
suggesting a correlation between ROS production and MAPK
activation. Previous investigations showed significant MAPK
activation and antioxidant defense in water frog tissues after
arousal from hibernation, strongly supporting the above assumption
(Feidantsis et al., 2012a, 2013). However, some members of the
MAPK family, such as p44/42 MAPK and JNKs, exhibited 2- or 3-
fold higher activation in the foot of snails from the coast compared
with the mountain population during arousal (Figs 4-6, lower
panels). This might be correlated with the sharp increase in ambient
temperature at the coast, resulting in acceleration of metabolic
reorganization and rate during arousal. Additionally, as the snails at
the coast will face higher temperatures during seasonal warming,
maintenance of activated MAPKSs at high levels, mainly in the foot,
may be involved in cytoprotection by modulating expression of
different genes. JNK and p38 MAPK activation is in most cases
associated with the promotion of apoptosis, whereas p44/42 MAPK
activation is generally associated with protection (Xia et al., 1995;
Yu et al., 2013).

Evidence for seasonal apoptotic and anti-apoptotic
responses

The above-mentioned responses may be related to several cellular
stress phenomena, including apoptotic processes. A cellular process
that is closely related to apoptosis is the activation of the ubiquitin
pathway. Several studies have reported that the ubiquitin—
proteasome system has an important role to play in the apoptotic
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pathway (Orlowski, 1999; Bader and Steller, 2009). Ubiquitination
is crucial for cellular processes, such as protein degradation,
apoptosis, autophagy and cell cycle progression. Our results show a
marked increase in the levels of ubiquitin conjugates in
hepatopancreas of H. lucorum from the coast, indicating increased
protein degradation during arousal from overwintering, probably
related to oxidative stress (Fig. 7B—F), which was not that obvious in
the foot (Fig. 7H-L). It has been reported that a sudden ROS
increase during reperfusion can temporarily overwhelm the cellular
antioxidant system and cause irreversible damage to DNA, proteins
and lipids, and alter cell viability and integrity (Storey and Storey,
2004). The results from both hepatopancreas and foot tissues,
including those obtained from reciprocal transplantation, indicate
that habitat determines ubiquitination levels, which seems to be
more potent in the tissues of snails from the coast during and after
arousal. As reported elsewhere, both JNK and p38 MAPK activation
may be involved in apoptotic phenomena (Dhanasekaran and Reddy,
2008; Redza-Dutordoir and Averill-Bates, 2016). Both MAPK
members are markedly increased during seasonal arousal from
hibernation and/or estivation, strongly suggesting a correlation with
ROS production. Rouble et al. (2013) reported that activation of the
anti-apoptotic pathway may be central to energy conservation
during hypometabolism in mammalian hibernation and play a
cytoprotective role that ensures long-term cell and macromolecular
viability under anoxic versus aerobic recovery conditions.
Moreover, Hockenbery et al. (1993) found that Bcl-2 prevents
cells from H,O0, and oxidative stress-induced death. Our results,
however, indicate that the significance of anti-apoptotic pathways
and Bcl-2 is tissue specific in H. lucorum, with phenotypic plasticity
being habitat dependent (Fig. 8). The marked increase in the levels
of Bcl-2 in the hepatopancreas of mountain snails when transplanted
to the coast strongly supports the above assumption (Fig. 8D).
However, the anti-apoptotic pathway seems to be more significant in
the foot either during winter or after arousal in snails from the coast
(Fig. 8H). Similarly, Gerber et al. (2016) reported enhanced anti-
apoptotic responses during anoxia and recovery in a freeze-tolerant
wood frog, Rana sylvatica. Moreover, the further Bel-2 increase
during summer indicates its anti-apoptotic role during estivation. A
recent investigation suggested that microRNAs regulate survival
mechanisms by targeting the Akt and p44/42 MAPK signaling
pathways, as well as myosin genes in land snails during estivation
(Hoyeck et al., 2019). The marked increase in the levels of p44/42
MAPK in the foot of coast snails during arousal and summer is
strong evidence regarding the correlation between p44/42 MAPK
signaling pathways and Bcl-2. In support of this, the reciprocal
transplantation experiments showed that when snails from the coast
are transplanted to the mountain, there is no increase in the levels of
p44/42 MAPK (Fig. 5) and Bcl-2 (Fig. 8) during summer.

The decrease of ubiquitin conjugate levels during the summer
indicates reduction of protein degradation during estivation, which
is consistent with the reduction of protein recycling during
hypometabolism (Storey and Storey, 2004). However, the elevated
ubiquitin conjugates in October in the tissues of mountain snails is
evidence for the activation of the corresponding pathway. In line with
this response, JNK and p44/42 MAPK exhibited a similar pattern of
changes but mainly in the hepatopancreas, indicating their probable
involvement in cellular reorganization and preparation of snails to
enter hibernation.

Conclusion
Overall, our results are in agreement with the hypothesis of a
preparatory strategy for defense against oxidative stress and that

ectotherms from higher altitude are more sensitive to changes in
temperature, whereas populations inhabiting niches where higher
temperatures prevail maintain higher levels of constitutive Hsps at
all times. Moreover, the reciprocally transplanted snails indicate a
phenotypic plasticity of most biochemical factors studied as a
response to environmental stress in the corresponding habitat, which
is also suggested by the results of the PCA analysis. However, a few
of them exhibited the same pattern of changes regardless of the
acclimatization habitat (as shown by the high percentage of the
variable ‘population of origin’ explaining these results), and it
seems to be tissue specific. Specifically, steady Hsp70 levels in the
foot when the mountain population was transplanted to the coast,
steady Hsp90 levels in the hepatopancreas when both native snail
populations were reciprocally transplanted, and similar JNK
activation levels in the foot of both populations when these were
transplanted indicate a genetic predisposition. Additionally, similar
foot ubiquitination levels between the mountain population moved
to the coast and the original mountain population, and the same
Bcl-2 levels in the hepatopancreas when the coast snails were
transplanted to the mountain might suggest a genetic basis
supporting these biochemical responses. Several studies have
showed genetic differences in thermal tolerance and Hsp70
expression among populations of Drosophila spp., indicating that
high temperature in nature may be an important selective factor
(Krebs and Feder, 1997; Serensen et al., 2001; Zatsepina et al.,
2001). As we do not know whether these responses could be
attributed to the snails’ genetically inherited traits, this should be
addressed in future studies focusing on species and the genetic
diversity of their populations.
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