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Abstract 
Balance control is one of the crucial challenges in bipedal locomotion. Humans need to 

maintain their trunk upright while the body behaves like an inverted pendulum which is 

inherently unstable. Instead, the virtual pivot point (VPP) concept introduced a new virtual 

pendulum model to the human balance control paradigm by analyzing the ground reaction 

forces (GRF) in the body coordinate frame. This paper presents novel VPP-based analyses of 

the postural stability of human running in a 3D space. We demonstrate the relation between 

the VPP position and the gait speed. The experimental results suggest different control 

strategies in frontal and sagittal planes. The ground reaction forces intersect below the center 

of mass in the sagittal plane and above the center of mass in the frontal plane. These VPP 

locations are found for the sagittal and frontal planes at all running speeds, respectively. We 

introduced a 3D VPP-based model which can replicate the kinematic and kinetic behavior of 

human running. The similarity between the experimental and simulation results indicates the 

ability of the VPP concept in predicting human balance control in running and can support its 

applicability for gait assistance.  
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INTRODUCTION

Human leg morphology and motor control have evolved during thousands of years to perform 

various locomotion tasks over a wide repertoire of surfaces. Inspired by biological evolution, 

roboticists try to achieve similar capabilities in legged robots (Kim and Wensing, 2017). In 

that respect, simple template models like the spring loaded inverted pendulum (SLIP) 

(Blickhan, 1989) which can predict human leg function in the running were used to design 

and control legged robots (Ahmadi and Buehler, 1999; Hubicki et al., 2016). Further, 

quadruped robots such as MIT Cheetah can outperform humans concerning performance 

(speed) and efficiency (Seok et al., 2014). However, human capabilities in agile movement 

tasks such as running are still far beyond those of bipedal robots (Tajima et al., 2009).  
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Among different fundamental elements of legged locomotion, namely locomotor 

subfunctions (Sharbafi et al., 2017), upper body balancing is one of the most challenging 

ones. Bipeds are dynamically unstable and need to keep their trunk upright, especially inagile 

gaits like running. The increased complexity may result from the placement of more than 

50% of total body mass in the upper body having significantly large inertia (Thorstensson et 

al., 1984). Because of that, small deviations in trunk position can significantly affect the 

whole body stability (Drama and Badri-Spröwitz, 2019). Nevertheless, humans benefit from 

the trunk’s inertia to facilitate locomotion and can simply keep balance in running with 

minimal energy consumption (Bramble and Lieberman, 2004). Therefore, understanding 

balance control in running can simplify bipedal robot control (Sharbafi et al., 2016) and 

improve gait assistance with exoskeletons (Nasiri et al., 2018; Sugar et al., 2017).  

 

Mechanics of balance can be understood in terms of how the ground reaction force (GRF) 

acting at the center of pressure (CoP) changes the body’s angular momentum about its center 

of mass (CoM) (Popovic et al., 2005). Several methods were developed to quantify stability 

based on the relation between GRF, CoM, and CoP such as zero moment point (ZMP) (Kajita 

et al., 2007), foot rotation indicator (FRI) (Goswami, 1999) and centroidal moment pivot 

(CMP) (Popovic et al., 2005). In 2010, a new method was introduced by Maus et al., which 

could describe balancing in biological legged locomotion with a virtual pendulum (VP) 

model (Maus et al., 2010). They showed that the GRFs intersect near a virtual pivot point 

(VPP) above the center of mass (CoM) in the sagittal plane during human and animal 

walking (Maus et al., 2010). This method provides a template model for posture control, 

which does not need to measure body orientation with respect to the ground. Therefore, 

balancing can be achieved using the proprioceptive sensory signals, i.e., trunk to leg angle 

(Maus et al., 2010).  

 

The VPP concept was not only utilized to predict biological gaits but also for the control of 

robots, e.g., ATRIAS robot walking (Peekema, 2015). Due to the bioinspired nature of the 

VPP concept, it has been also used to control assistive devices (Zhao et al., 2019; 2017; 

Firouzi et al., 2021). In the previous studies, generating a VPP above CoM was used as the 

control goal to achieve postural stability in different gaits in simulations and robots (Shar- 

bafi et al., 2013; Maus et al., 2010). However, just a single study experimentally reported a 

VPP above CoM for running gait which is limited to only a single trial of a single subject 

without any statistical analysis (Blickhan et al., 2015). Recently, a simulation study using 

template models showed that intersecting GRFs below the CoM (resulting in negative VPP) 

could better explain running gait in the sagittal plane concerning the trunk angle (Drama and 

Badri-Spröwitz, 2019). Another study demonstrated similar negative VPP in human running 

at 5m/s (Drama et al., 2020).  

 

Still, the VPP method was applied only to analyze running in the sagittal plane whereas 

lateral balance is even more critical in bipedal gaits (Kuo, 1999; MacKinnon and Winter, 

1993). Humans prefer a narrow step width in running gait, which may make maintaining 

lateral balance more challenging (Arellano and Kram, 2011). From a broader perspective, 

although the majority of research on human gait has focused on the sagittal plane, movements 

in the frontal plane have particular importance for balance control (Krebs et al., 2002). In that 

respect, lateral stability in running gait needs further investigations.  
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In this study, we analyze human running in 3D, based on the VPP concept. We show that by 

choosing an appropriate coordinate frame, the VPP concept can also explain the relation 

between GRF, CoM and CoP in the frontal plane and consequently lateral balance control in 

human running experiments. Further, we explore the relation between VPP position and 

motion speeds. Then, we extend the template SLIP-based model of running with a trunk 

segment (called TSLIP) to employ the VPP to stabilize 3D running gait. The simulation and 

experimental results are compared which reveals potentials for future applications of this 

method to develop agile bipedal robots or assistive devices supporting human balancing in 

running gaits.  

 

In the first part of this study, we analyze human running gait with the VPP landscape in the 

sagittal and the frontal plane. Our gait analysis involves humans running on a treadmill over a 

range of speeds. In the second part, we perform a simulation studyusing a template model to 

support our experimental findings in the 3D environment. Results of our simulation are 

compared with the human experiment to investigate the ability of our model to predict human 

kinematics and kinetics during running gait. Also, the robustness of our simulation is 

examined against perturbation in CoM velocity (representing an external push) when the 

position of the VPP is considered as a control target. 

 

METHODS 

This section describes the experimental data and explains how to verify the VPP in steady-

state running gaits in the frontal and sagittal planes. Then, we present the method of applying 

VPP for control to generate stable running in a template-based 3D model. 

 

Experimental data analyses 

For studying VPP in human running, we borrowed the dataset from (Hamner and Delp, 

2013), which is accessible at (dataset, 2013). The experiments include treadmill running of 10 

male individuals (age: 29  5 years, height: 177  4 cm, mass: 70.9  7 kg) at four running 

speeds. Each subject is an experienced long-distance runner who reported running at least 

50 km  per week. Positions of 54 reflective markers were measured at 100 Hz using eight 

Vicon MX40   cameras. In addition to motion capture data, the ground reaction forces and 

moments were measured at 1000 Hz using a Bertec Corporation instrumented treadmill. Each 

subject ran between 15-20 steps at each speed. Marker positions and GRFs were filtered by a 

15 Hz low pass filter with a zero-phase fourth-order Butterworth filter and a critically 

damped filter, respectively. The Stanford University Institutional Review Board approved the 

experimental protocol and subjects provided informed consent to participate. More details 

about the dataset can be found in (Hamner and Delp, 2013).  

 

To analyze human balance control we utilized a 12-segment, 29-degree-of-freedom generic 

musculoskeletal model (Hamner et al., 2010) in OpenSim software (Delp et al., 2007). First, 

the model was scaled to match each subject’s anthropometry based on experimentally 

measured markers placed on anatomical landmarks. Then joint angles were calculated using 

an Inverse Kinematic Tool (IK). The output of the IK tool together with the GRF data were 

employed to compute the CoM and the virtual pivot point (VPP).  
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In an ideal VPP model, all GRF vectors starting from the CoP intersect in a single virtual 

pivot point in the body coordinate frame. In the experimental analyses, we define the VPP as 

a point that minimizes the time-integral of the difference between the original angular 

momentum and the angular momentum calculated if the GRF is passing through the VPP (see 

details in (Maus et al., 2010)). Based on this definition, Vielemeyer et al., introduced a 

measure called the coefficient of determination 2
R  to evaluate the ability of the VPP model 

to predict human posture control (Vielemeyer et al., 2019). A comparable 2
R  measure was 

used in (Herr and Popovic, 2008) to assess the amount of agreement between zero-moment 

model forces and measured horizontal forces in human walking. We adapt the 2
R  measure 

proposed in (Vielemeyer et al., 2019) by considering the GRF magnitudes (normalized by the 

average GRF in stance phase) in the added weight W  as follows:  
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in which (
ij

exp
  and )

i j

V P P
  are the force vector angle taken at the th

j  instant of gait cycle of the 

th
i  trial for the experimental data and VPP model-predicted data, respectively. In the VPP 

model, the predicted force vector is from CoP to the VPP. The bar sign indicates the mean of 

the variables. 
t

N  and 
s

N  are the number of trails and the number of samples in each trial, 

respectively. In the ideal scenario, when all GRFs intersect at one focused point, 2
1 0 0 %R   

is obtained, which means the VPP model can perfectly predict GRF’s direction and human 

balancing as a result of the interaction with the ground, reflected in the GRF vectors. Low 

positive values for 2
R  indicate that the estimation using VPP is almost similar to using the 

mean value 
_

exp . In this study, we consider 2
7 0 %R   as a lower threshold to decide about 

VPP existence in a gait pattern.  

 

In the following we describe VPP calculation in the sagittal and frontal planes:  

 

VPP in the sagittal plane 

The first step for finding the VPP is choosing an appropriate (reference) coordinate frame 

with respect to the human body. We define the reference frame in the sagittal plane with the 

origin at the body CoM while the upper-body direction (the hip to shoulder vector) 

determines the vertical axis (Maus et al., 2010) (Fig .1a). Also, we skip the data at the 

first25% of the stance phase to remove the impact effect. After transferring the GRF data 

from world frame to the defined reference frame, the VPP is calculated as instructed in (Maus 

et al., 2010).  

 

VPP in the frontal plane 

The reference frame in the frontal plane is also centered at body CoM, whereas the pelvis 

orientation defines the horizontal axis (Firouzi et al., 2019) (Fig. 1b). We tested several 

different orientations for the reference frame in the frontal plane (e.g., lumbar line) and the 

pelvis orientation provided the simplest and most accurate description of the GRF direction. 
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Previous studies (MacKinnon and Winter, 1993) also presented the significant contribution of 

pelvis to lateral balance control in the single support phase. 

 

Simulation model 

To predict humans balance control in running, we developed a 3D template model by 

extending the SLIP model with an additional trunk and damper. This model consists of a 

massless parallel spring-damper arrangement representing the virtual leg, beside a rigid trunk 

for the upper body with mass m  and moment of inertia J , (see Fig .1c, d). Generating stable 

running with upright trunk ( 9 0 ) using TSLIP (trunk+SLIP) is possible (Sharbafi and 

Seyfarth, 2014). However, to mimic human inclined upper-body posture with the template 

model, injected energy in the trunk should be dissipated. For this, we add a damper to the leg. 

  

In our model, the virtual hip joint represents a point in the middle of the human left and right 

hip joints. The virtual leg is a segment that connects the virtual hip to the foot. The trunk 

orientation, defined by a line connecting the hip to the CoM, is characterized by the 

corresponding angles in the sagittal (
s

 ), frontal (
f

 ) and horizontal (
h

 ) planes. By 

controlling hip torque in the sagittal and frontal planes in order to pass GRFs through VPP in 

these planes and choosing an appropriate leg adjustment strategy, stable human-like running 

can be achieved in 3D space.  

 

The equations of motion are presented in Appendix A. 

 

Control 

The VPP model was already utilized to predict human-like hip torque and posture control in 

different gaits in the sagittal plane (Sharbafi et al., 2013;Maus et al., 2008). Here, we use this 

concept for posture control in 3D running using the template-based model described in 

"Simulation model" section and Fig. 1c, d. In the following, first, we describe the VPP-based 

posture control in 2D, and then, the extension to 3D will be presented. Finally, the adaptation 

of the VPP position using anoptimal and robust controller will be explained. 

 

VPP-based Balance control in 2D 

As aforementioned, within the VPP concept, balance control is achieved by redirecting the 

GRF vectors towards a fixed point at each instant of the stance phase. In (Sharbafi et al., 

2013), this VPP-based balance control method, called VPPC (virtual pendulum posture 

control) is presented for the sagittal plane. Using the TSLIP model (see Fig. 1c), the required 

hip torque ( ) to redirect the GRF to a determined VPP in 2D space is calculated by the 

following equation:  

 

  
 

 
l

d s in rs in
F l

l d co s rco s

  


  

 


  
 (2) 
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in which, , , , , ,
l

F l r d    are the leg force, leg length, the VPP distance to CoM, the hip 

distance to CoM, the angle between upper-body orientation and the leg, and the VPP’s 

deviation angle from trunk axis, respectively, as shown in Fig. 1c.  Here,   and r  are the 

control parameters which determine the VPP position. Knowing the control parameters   

and r , the required sensory information is the leg force and the angle between the upper body 

and the leg. These are internal information and no external sensory data (e.g., body 

orientation with respect to the ground) is required. Further details about this controller are 

described in (Sharbafi and Seyfarth, 2014). 

 

VPPC in 3D 

In this paper, we extend the VPPC method to 3D. According to our experimental results (next 

section), GRFs intersect below CoM when we look at the sagittal plane, and above CoM 

when we look at the frontal plane. Based on this observation, our 3D model’s upper body is 

controlled using two separate 2D VPPCs in the sagittal and frontal planes. By combining the 

corresponding 2D VPPCs, stable running in the 3D model will be achieved (see attached 

video (S1)). Using indices s , f , and h  denoting the corresponding parameters in the 

sagittal, frontal, and horizontal plane, respectively, the 3D VPPC controller will be given by 

the following equations:  
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 (3) 

 

It is noteworthy to mention that the two VPP points in the frontal and sagittal planes are not 

related as they are controlled by different actuators. As a result, the 3D VPPC will be 

designed by separate adjustment of the VPP positions in the two mentioned planes using the 

corresponding control parameters (   and r ).  

 

Robust VPPC 

As described in (Sharbafi et al., 2013), the VPPC can generate stable running and hopping in 

2D. However, to provide robustness against perturbations, the VPP position needs to be 

adapted. This controller adaptation is also a prerequisite for generating astable and robust 

running gait in 3D. Inspired by our previous study (Sharbafi et al., 2013), we utilize a linear 

quadratic regulator (LQR) as an optimal and robust controller to adjust the VPP position once 

per step. In this higher control level, the new VPP position is computed at each apex (highest 

CoM height during one step) for the next stance phase (see Fig. 2).  

 

In the coordinate frame shown in Fig. 1d, the 3D template model configuration in the flight 

phase can be given by the position of CoM and the orientation of the trunk denoted by the 

kinematic vector [ , , , , , ]
T

s f h
X x y z    . By detecting the foot contact knowing the attack 

angle at touchdown, vector X  suffices to determine body configuration in the stance phase. 

Thus, the system state can be defined by [ , ]
T T T

S X X . Due to the definition of the apex, y  
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is equal to zero, and it can be omitted from the state vector. In steady-state running, the 

horizontal position of the CoM ( x ) is considered irrelevant and can be omitted. Therefore, 

the reduced state space at apex will be given by [ , , , , , , , , , ]
T

s s f f h h
S x y z z       .  

 

The Poincare return map P  between two sequential apex points is defined by 

 1
,

k k
S P S U


 , considering the VPP position parameter set [ , , , ]

T

s s f f
U r r   as the 

control input. Assume a fixed VPP position set denoted by *
U  creates a periodic 3D running 

gait. This stable gait can be expressed by the state vector *
S  at the apex, as the Poincare 

map’s fixed point. By defining the change of variables  
*

Δ
n

S S S   and  
*

Δ
n

U U U  , 

the first order of the Poincare return map around the fixed point *
S  can be written as:  

 

  
1

Δ Δ Δ
n S n U n

S J S J U


   (4) 

 

in which, index n  indicates the variables in the th
n  step and  

* *
: ,

S

P
J S U

S





 and 

 
* *

: ,
U

P
J S U

U





. By minimizing the following cost function J , the control parameters at 

each step can be found with the discrete LQR (D-LQR) formulation as an optimal control 

method (Bertsekas et al., 1995).  

 

  
1

Δ Δ Δ Δ
T T

n n n n

k

J S Q S U R U





   (5) 

 

Here, Q  and R  matrices are weights of error and control effort terms. If the pair  ,
S U

J J  is 

controllable, then Δ
k

S  can be controlled by the following linear state feedback controller.  

 

  
*

k k
U K S U    (6) 

 

Within the D-LQR formulation, the control gain K  will be calculated as follows:  

 

  
1

( )
T T

U U U S
K R J P J J P J


   (7) 

 

in which, P  is the unique positive definite solution of the following discrete time algebraic 

Riccati equation (kirk, 2004).  

 

   
1

( )
T T T

S U U U U S
P Q J P P J R J P J J P J


     (8) 

 

The importance of the error and energy consumption can be tuned by setting the weighting 

matrices R  and Q .  

Swing leg adjustment: 

We use the velocity-based swing leg adjustment (VBLA) for calculating the attack angle in 

the flight phase (Sharbafi and Seyfarth, 2016). This method’s advantages in resembling 

human swing leg movement and providing a robust swing leg adjustment were presented in 
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(Sharbafi and Seyfarth, 2016). According to the VBLA, the leg direction ( O ) is determined 

by a weighted average of the CoM velocity vector (V ) and the gravity vector ( G ). The 

weight of each vector is decided by a coefficient 0 1  .  

 

   1O V G     (9) 

 

in which, [ , ] /
T

x y
V v v g l  and [ 0 , 1]

T
G    results in a dimensionless equation. This swing 

leg placement strategy is used for both sagittal and frontal planes.  

 

RESULTS 

This section first investigates the existence of the VPP in human running in the sagittal and 

frontal planes and the variations concerning gait speed. Then, the simulation results of VPP-

based balance control in the 3D running are presented.  

VPP in human running 

To verify VPP existence at each experimental trial, we found the VPP point as described in 

the "Experimental data analyses" section and calculated the 2
R  value from Eq. (1). As 

aforementioned, human balance control matches the VPP concept if 2
7 0 %R  . Further, we 

analyzed the VPP position variation versus running speed.  

 

VPP in sagittal plane 

To find the VPP, the GRF vectors are transferred to a CoM-centered coordinate frame that is 

aligned with the upper body orientation (shown in Fig. 1a). Fig. 3 shows the GRF and the 

VPP point for one sample running step at 4 /m s . To remove the impact effect, the GRF data 

in the first 25% of the stance phase (shown by dashed lines in Fig. 3a) is not considered to 

calculate the VPP. Fig. 3b depicts the CoM, the VPP, and the GRF vectors (dashed lines) 

plotted from the CoP in the selected coordinate frame. A clear intersection point at VPP 

(green circle) is visible in this sample step. In this case, the VPP is placed below the CoM 

(red circle).  

 

The position of the VPP in the selected coordinate frame and 2
R  coefficients are depicted for 

each step in Fig. 4. Light and dark colors illustrate the corresponding information for the left 

and right legs, respectively. Except for scarce samples, the VPP position in the sagittal plane 

is below the CoM for all subjects at different speeds. The coefficient of 2
R  for all subjects is 

higher than 90% , which indicates that the VPP can successfully predict experimental GRFs. 

Also, there is no significant difference between the right and left legs for the VPP position 

(p=0.42).  

 

The VPP position is not fixed at each speed, but it changes around a line with a negative 

slope, shown with the same colors used for drawing the VPPs of different legs. The identified 

regions for the VPP positions at various speeds are comparable (table reftable:VP). The slope 

of the fitted lines is reduced by increasing the gait speed. On average, the position of the VPP 

is in front of the CoM at all speeds. This property is also observed in the average CoP 

position during running gait (see Fig. 3b as an example). More details on the mean and 
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standard deviation of the VPP location and 2
R  values are presented in table .1. On average, 

the VPP in the sagittal plane is located about 19cm  below and about 1.2cm  anteriorto the 

CoM. Also, horizontal and vertical deviation of the VPP from CoM increases by raising the 

gait speed except from 4 /m s  to 5 /m s .  

 

VPP in frontal plane 

For investigating VPP in the frontal plane, the GRFs are transferred to a CoM-centered 

coordinate frame aligned based on the pelvis orientation as shown in Fig. 1b. As expected, 

the VPP positions in thefrontal plane are different for the left and right legs (see two sample 

steps of running at 4 /m s  in Fig. 5). The focused intersection point of GRFs in Fig. 5 shows 

that the VPP concept can be extended to the frontal plane by choosing an appropriate 

coordinate frame. Unlike the sagittal plane, the VPP in the frontal plane is placed above the 

COM and on the right (left) side of the CoM during the right (left) foot contact. Also, VPP’s 

distance to CoM is not significantly different between the right and left leg (p=0.47).  

 

The VPP positions with 2
R  value above 7 0 %  are shown in Fig. 6a. The distributions of the 

VPPs for the left and right steps in the frontal plane are almost symmetric. To quantify this 

qualitative observation, we depicted the best linear approximation in this figure (dark and 

light green lines, respectively for right and left leg). Statistical comparison between different 

speeds is reported in Tab. 1. On average, the VPP in the frontal plane is located about 35cm  

higher than the CoM with about 5cm  horizontal distance on the same side of the stance foot. 

To speed up the running gait, the VPP moves downward (towards the CoM) and horizontally 

farther from the CoM.  

 

Fig. 6b illustrates the 2
R  values for both legs of different subjects at four different speeds. 

Among 80 different cases ( 2 4 1 0leg s sp eed s su b jec ts  ), VPP exists in 70 cases in the frontal 

plane. The remaining 12.5% of the experimental trials in which VPP was not clearly 

identified are related to subjects s1, s6, and s7. For s7, clear VPPs with 2
R  above 90% 

(instead of 70% ) are found in both legs for all trials except the left leg steps in running at 

5m/s. VPPs with 2
R  values above 7 0 %  can be identified in both legs in most running steps 

of subject s6 at 2  and 3   /m s , and in right leg steps at 4   /m s . It is fair to say that s1’s 

running patterns did not show meaningful VPPs in most trials.  

 

In some steps (especially for subject s1), 2
R  has a negative value. A negative value for 2

R  

can be achieved when GRFs are almost parallel. These unacceptable VPPs were not shown in 

Fig. 6, but the trials experiencing such conditions are illustrated by the pink regions in Fig. 

6b. The average 2
R  values for all ten subjects are presented in Table. 1. We also calculated 

the mean 2
R  values at each speed without considering subjects s1 and s6, as shown by the 

colored rows in the table. This new calculation supports the existence of VPP in the frontal 

plane for eight subjects out of ten.  

 

Simulation result 

 

In this section, we present our simulation results in 3D environments.  
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The model is able to generate stable running at different speeds. Here we detail the outcomes 

for running at 4   /m s . We set the VPPC control parameter to 2 2
s

r c m  and 1 7 4
s

    for 

the VPP below CoM in the sagittal plane and 3 0
f

r c m  and 4
f

   for the VPP position 

above CoM in the frontal plane when the right leg is in the stancephase. Indeed, the sign of 

f
  changes by changing the supporting leg (e.g., from right to left) as observed in Fig. 6 for 

human running. While selecting VPP in the frontal plane, we need to consider the mapping 

between the model virtual hip and the real hip in humans. For example, by increasing the 

vertical position of VPP in humans, the horizontal distance from VPP to hip decreases. 

Therefore, to compensate the increase in 
f

r  in the frontal plane we need to decrease 
f

 . 

Also, we applied a perturbation at the touch-down moment to the CoM speed to investigate 

the robustness of the system. As stated in the "Robust VPPC" section, event-based control of 

the VPP position allows us to improve the system behavior and robustness. Controllability of 

the pair  ,
S U

J J  is the only necessary condition easily met in this problem. In addition, using 

D-LQR for the selection of the gain vector K (Eq. (7)), we can use the weight matrix Q  and 

R  in Eq. (5) to determine the importance of the state variables error and control inputs. We 

set  10,1,1,1, 5,1,1,1,1,1Q diag  to devote higher importance to track the forward speed and 

trunk angle in the sagittal plane due to the significance of keeping the speed and balance 

control, especially in confront to the introduced perturbation. Also, the larger weights of the 

states in the sagittal plane relates to the unstable behavior of the negative VPP (explained in 

Experiments vs. simulation section). By setting  1,1,1,1R diag  we equalize the importance 

of all control inputs.  

 

Fig . 7a shows the trunk angle, forward and medio-lateral speeds of the CoM, besides the 

VPP parameters (angle and radius), when perturbation occurs in the sagittal plane. Here, 

perturbation is defined as a sudden 10% increase in the forward speed ( 0.4 /m s ). Before 

applying perturbation, the system is stable, and the model predicts running at 4   /m s . Before 

perturbation, the mean trunk inclination in the sagittal plane is about 5 , and it oscillates 

between 4  in the frontal plane. After perturbation, the trunk bends backward, and the 

controller decreases the VPP angle to compensate for perturbation. According to Fig. 7a, 

there is a clear correlation between the trunk’s bending angle and the VPP angle after 

perturbation. The perturbation in the sagittal plane also affects trunk orientation in the frontal 

plane due to the coupling between two planes. By changing the VPP parameters to cover 

from perturbation, the D-LQR controller can stabilize the system after a few steps, and 

system states converge to the states before perturbation.  

 

The robustness of the system against lateral perturbation is investigated by examining the 

reaction of the VPPC to a sudden increase in the medio-lateral speed (100% of maximum 

medio-lateral speed is added ( 0.05 /m s )). Fig. 7b demonstrates that the perturbation has a 

negligible impact on the forward speed and trunk angle in the frontal plane, while the medio-

lateral speed and the trunk angle in the sagittal plane need a few steps for recovery.  

 

DISCUSSION 

We selected the VPP concept to analyze postural stability in running in a 3D space. The 

quality of the identified VPP is utilized as a measure to evaluate the VPP method in 

predicting human running. Moreover, replicating the experimental results in a template-based 
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simulation model confirmed the proposed method’s functionality. In addition to discussing 

the presented outcomes, a detailed comparison between simulation and human running is 

presented in the following.  

 

VPP quality and location in human gait 

Previous studies reveal that appropriate control of whole-body angular momentum (WBAM) 

is critical to maintaining dynamic balance during locomotion (Begue et al., 2019). The 

WBAM can be computed by integrating the net external moment produced by the measured 

ground reaction forces around the CoM. Experimental evidence shows that the WBAM 

remains small during steady-state human walking (Herr and Popovic, 2008). Further, the 

prediction ability of the WBAM regulation decreases as the locomotion task becomes more 

dynamic (from standing and walking to running) (Popovic et al., 2002). As a more general 

postural control measure, the VPP concept not only can predict WBAM variations (Gruben 

and Boehm, 2012) but also can describe human balance control in more dynamic locomotion 

tasks. In this regard, we analyzed human running and the identified VPP in the sagittal and 

frontal planes at different speeds.  

VPP in sagittal plane: As stated in the "METHODS" section, the 2
R  value indicates the 

amount of agreement between experimentally measured GRFs and force vectors predicted by 

the VPP method. The distinguished VPP ( 2
R  about 98% ) in the sagittal plane demonstrates 

the remarkable matching of the experimental measurements and the predicted posture control. 

Similar high 2
R  values are reported by Drama et al. at 5m/s level ground running (Drama et 

al., 2020). Here, the VPP is placed below CoM (negative VPP) at all speeds (except in scarce 

samples), which means the WBAM component in the sagittal plane has a negative mean 

value. This result is in line with the previous findings showing the WBAM drops in the first 

half of the stancephase and raises in the second half of the stance phase (Sepp et al., 2019; 

Hinrichs, 1987). Also, our results confirm the negative VPP found in (Drama et al., 2020). 

The negative VPP creates GRFs passing behind the CoM in the first half of the stance phase, 

exerting a flexion moment on the body, which causes the drop in the WBAM. The 

subsequent rise in the WBAM during the second half of the stance phase resultsfrom the GRF 

vectors passing the negative VPP and, consequently, in front of the CoM (Hinrichs, 1987). 

The negative VPP increases the acceleration and deceleration in the fore-aft direction 

compared to the positive VPP, observed in human walking (Drama and Badri-Spröwitz, 

2019; Maus et al., 2010). Furthermore, a simulation study shows that the negative VPP 

reduces the leg loading and net hip work (Drama and Badri-Spröwitz, 2019).  

 

The experimental data (Table .1) shows that VPP in the sagittal plane is located anterior to 

the CoM at all speeds (p<0.001). This observation can be explained using the trunk 

inclination and the WBAM behavior in the sagittal plane. Since thenet external moment 

acting on the CoM in the flight phase is zero, the WBAM remains constant. Hence, for a 

periodic motion such as running (considering left and right leg symmetry in the sagittal 

plane), it is necessary to create a restoring extension moment in the second half of the stance 

phase to compensate for the flexion moment in the first half of the stance phase. In other 

words, the external moment resulted from the GRF must become balanced around the CoM 

(Fig. 3). The counterbalance results in forward inclination of the upper-body.  
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The horizontal deviation of the VPP from CoM increases with running speed as a faster gait 

needs a more inclined trunk. In addition to increasing upper-body inclination, distancing VPP 

from CoM could increase both braking and propulsive forces. To further analyze the 

connection between the VPP position and the gait speed, the general trend of calculated VPPs 

was approximated by a linear relation. As shown in Fig. 4 and Table .1, the faster the 

running, the higher the slope of the fitted line. This means that for faster motions, the 

horizontal adjustment of the VPP is employed more than the vertical adjustment and vice 

versa.  

 

VPP in frontal plane: The WBAM in the frontal plane has a greater range than sagittal and 

horizontal planes during running (Sepp et al., 2019; Hinrichs, 1987). According to Table .1, 

the mean 2
R  value of the VPP in the frontal plane is about 80% , meaning that the VPP 

concept is also valid for analyzing lateral balancing. The existence of the VPP cannot be 

verified for two out of ten subjects. Skipping these two subjects’ data, the average 2
R  will be 

about 90% which certifies VPP-based lateral balance control for 80% of the dataset. Unlike 

the sagittal plane, positive VPP (above CoM) is found in the frontal plane, at all speeds, 

except for sporadic samples. Also, the VPP is placed on the same side of the CoM that the 

support leg is. Compared to the CMP (centroidal moment pivot) (Herr and Popovic, 2008), 

this feature of VPP placement helps better predict the WBAM and balance external 

momentum around the CoM at each gait cycle in the frontal plane (Hinrichs, 1987). The 

WBAM in the frontal plane raises when the left leg is in contact with the ground and drops 

when the right leg is in contact with the ground. In other words, the runner’s body axis 

always tends to lean toward the swing leg. It seems that the VPP position could compromise 

between hip torque minimization and WBAM minimization.  

 

By increasing the speed up to 4 /m s , the VPP tends to move towards the stance leg hip joint 

(equivalently, increasing distance from COM). This pattern in VPP placement is observed in 

speeds up to the preferred running speed ( 4 /m s  as stated in (Kong et al., 2012)). Thus, from 

slow to moderate running, the priority of hip abduction torque minimization is higher than 

WBAM minimization. However, a faster gait enforces a shorter step duration, and as a result, 

the increase in WBAM does not yield higher upper body inclination. Roughly speaking, 

tuning the distance between VPP and CoM can be used to control the WBAM by adjusting 

the lever arm of the GRF around the CoM. Therefore, the upper body keeps balance by fast 

switching between two unstable modes (tend to fall toward the swing leg) (Firouzi et al., 

2019). Finally, increasing the horizontal distance between the VPP and the body’s CoM 

decreases the lever arm of the GRF around the knee joint center in the frontal plane and 

consequently reduces the varus moment. This may be a mechanism to reduce injury risk 

during running (Powers, 2010).  

 

Experiments vs. simulation 

The VPP below CoM (negative VPP), found in human experiments in the sagittal plane, 

represents an inverted pendulum behavior that is inherently unstable (Firouzi et al., 2019; 

Muller et al., 2017). Therefore, such a negative VPP is not robust against even small 

perturbation except using an adaptation method (e.g., D-LQR). This finding is supported by 

the simulation results (Fig .7), showing that the perturbation impact on the trunk angle is 

more significant in the sagittal plane than in the frontal plane. In this study, we used 

perturbation to investigate the robustness of our simulation when the position of VPP is 

considered as a control target. If the VPP is the key for balance control, it should also have a 
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solution for perturbation recovery. Our simulation results show that the 3D model can easily 

recover from perturbation using VPP position readjustment. These results are in line with the 

Drama et al. finding that VPP’s horizontal position in level running differs from that of 

perturbed running (Drama et al., 2020). This observation also reveals the potential of VPP 

adjustment to be used in robot posture control.  

 

The simulation results showed that for stable running with a slightly inclined trunk, the VPP 

should be placed anterior to the CoM, which complies with the experimental results. 

Furthermore, to recover from the perturbation, the VPP shifts backward (in the selected 

coordinate frame), which decreases the trunk inclination (Fig. 7a).  

 

We used the previously mentioned 3D running simulations at 4 /m s  to further validate the 

ability of the VPP concept and the proposed model in predicting human balance control and 

mimicking human running kinematic and kinetic behavior. First column of Fig. 8 shows the 

trunk angle in the sagittal and frontal plane for simulations and experiments. The mean trunk 

inclination in the sagittal plane for experimental data is nicely matching to our simulation 

results. However, the simulated trunk angle pattern differs from the measured angle patterns 

at the beginning of the stance phase. The observed forward movement in the early stance 

phase which is also consistent with the previous studies (Thorstensson et al., 1984) is resulted 

from the negative VPP. The difference between simulation and experiment results from the 

swing phase modeling imprecision; as in our template model, the swing phase is represented 

by a ballistic motion considering a constant angular velocity of the trunk. On the contrary, the 

human trunk moves backward in the first half of the swing phase, followed by a forward 

movement. It is important to say that the human-like trunk movement in the stance phase is 

replicated by the model with a short delay, which is required to compensate for the missing 

trunk movement in the previous swing phase. One way to improve the similarity between the 

model and the human experiment is to add mass to the leg of our template model as 

implemented in the XTSLIP model presented in (Sharbafi et al., 2013). The trunk lateral 

angle (in the frontal plane) of the simulation model resembled the experimental data in the 

stance phase. Also, the mean pelvis inclination in the stance phase is quite similar for 

experiment and simulation. The XTSLIP model may also predict upper body returning 

movement in the flight phase, which is missing in our model.  

 

The second column of Fig. 8 shows the hip torque in the sagittal (extension/flexion) and 

frontal (abduction/adduction) planes for both simulations and experiments. In human running, 

the stance phase starts with a small (negative) flexionhip torque followed by a large extension 

torque to support the desired forward movement of the body. The model predicts a larger hip 

flexion than what was found in the experiment to compensate for the swing phase movement. 

Then, the forward motion is generated by an extension torque which is larger and longer than 

the preceding flexion torque (similar to the experiment). Since our model can control the 

trunk angle only in the stance phase, the hip joint first needs to resist the trunk’s backward 

motion and then compensate for flexion torque exerted by the trunk weight. The simulation 

model can predict the hip adduction torque (in the frontal plane) in the stance phase.  

 

Limitation of this study 

In this study, we skipped the data at the first 25% of the stance phase to remove the impact 

effect. Impact duration, differ among directions and foot strike conditions. For example, the 

impact phase duration varies from 15% to 30% of the stance phase due to the running style 
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(e.g., fore-foot strike, heel-strike or heel-toe running) (Nordin et al., 2017). In our dataset 

most of the subjects identified as mid-foot to heel-strike runners which show longer impact 

duration (for more information see (Hamner and Delp, 2013)). The impact effect might be 

compensated by intrinsic compliant element behaviour in the leg which does not undervalue 

the VPP-based posture control in most of the stance period. This limitation of this study can 

be further investigated in the future.  

 

Moreover, we used an existing data set (collected by another research group) that did not 

include women. Although the VPP concept is observed in both women and men locomotion 

in the previous studies (Gruben and Boehm, 2012; Drama et al., 2020), excluding women in 

this study is a limitation that needs to be addressed in future studies.  

 

Conclusion 

In this study, we investigated the virtual pivot point (VPP) in human running gait at a range 

of speeds in both sagittal and frontal planes, and analyzed the implication of the observed 

VPP to balance control using a 3D template model. Our findings show that ground reaction 

forces intersect near a point below CoM in the sagittal plane and above the CoM in the 

frontal plane at all speeds. Also, replicating the kinematic and kinetic behavior of the 

experiments with the template-based simulation model supports the applicability of the VPP 

concept in predicting human posture control in running. Further, we showed that VPP 

adaptation at each step (e.g., using a D-LQR) can stabilize the gait and warrants the 

robustness against perturbations. Our synthesizing method can be used for developing model-

based control approaches in humanoid robots and for gait assistance.  

 

 

APPENDIX 

3D template equation of motion: 

The 3D model introduced in the "METHODS" section and the VPPC controller are described 

in this section. Let’s define the CoM position by  , ,x y z  and the trunk angles in the sagittal, 

frontal, and horizontal planes, respectively by 
s

 , 
f

 , and 
h

 . The model shown in Fig. 1d 

can be formulated by the following equations:  
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The parameters of this model are described in Tab. 2. In Eq. (10), the ground reaction forces 

are:  
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in which the hip position is defined as follows  

 

  

h s s

h s s

h f f

x x d c o s

y y d s in

z z d c o s







 

 

 

 (12) 

 

Further, the leg force 
l

f  is the produced force by the leg spring and damper. We use a 

bilinear damper as a more realistic model of the leg damping behavior in running, as 

described in (Abraham et al., 2015).  

 

     0 0l
F k l l cl l l     (13) 
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Figures 
 

 

 
 

Figure 1. a) Selected reference frame ( ,x y ) for analyzing the VPP in the sagittal plane. The 

upper body orientation defines the vertical ( y ) axis. b) Selected reference frame ( ,z y ) for 

analyzing the VPP in the frontal plane. The pelvis orientation defines the horizontal ( z ) axis. 

The whole body CoM is selected as the origin of these frame. The world reference frame is 

shown by ( , ,  x y z ). c) 2D template model with a rigid trunk and a massless spring-damper 

for the leg. The required variables and parameters to derive equation of motion are shown. 

The green circle depicts the VPP and its distance to the CoM and the angle to the trunk 

orientation are illustrated with green color. d) The 3D extended model and its 2D projections 

in the frontal and sagittal planes. α  and β  are the attack angles in the sagittal and frontal 

planes, respectively.  
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Figure 2. Illustration of our control method. Balance control block gives hip torque τ  during 

stance. the VPPC block calculates hip torque for a fixed VPP. At each apex, LQR controller 

adapts VPP position. Swing leg control calculates swing leg angle of attack.  

 

 

 

 

Figure 3. Ground reaction force (GRF) and VPP in the sagittal plane of a sample human 

running step at 4 m/s. a) GRF magnitudes in the vertical and horizontal (anterior-posterior) 

directions. The data from the first 25% of the stance phase (shown with dashed lines) are 

skipped in VPP calculation to remove the impact effect. b) Demonstration of VPP existence 

(green circle). GRF vectors are plotted with dashed lines from the CoP in the coordinate 

frame centered atCoM (red circle) and aligned with upper-body orientation.  
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Figure 4. VPP existence in the sagittal plane. The results are shown in different colors for the 

right and left legs. a) Calculated VPP positions from ten subjects (s1 to s10) running at 

different speeds. b) 2
R  coefficients calculated for VPP at each step.  
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Figure 5. Example of ground reaction vectors and the calculated VPP in the frontal plane of 

human running experiment. GRFs are plotted with respect to a CoM-centered, pelvis 

coordinate frame. Green and red circles show VPP and CoM, respectively. a) Left leg. b) 

Right leg.  
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Figure 6. VPP existence in frontal plane. The results are shown in different colors for the 

right and left legs. a) Calculated VPP positions from ten subjects (s1 to s10) running at 

different speeds. b) 2
R  coefficients calculated for VPP at each step. The shadowed pink 

boxes represent the cases with unacceptable (e.g., negative) 2
R  values meaning VPP is not 

found.  
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Figure 7. Simulation results of 3D running at 4   /m s . The graphs show the performance and 

control variations in the sagittal and frontal planes. The first row depicts the trunk angle and 

the CoM speed as important system states, and the second row showsVPP control variables. 

a) With perturbation in forward speed (10% increase ( 0.4 / m s )). b) With perturbation in 

the medio-lateral speed (100% of the maximum medio-lateral speed is added ( 0.05 / m s )). 

The perturbation has been applied at the touch-down moment, and has been shown by the red 

arrow. 

 

 

 

Figure 8. Comparison of trunk angle (first column) and hip torque (second column) in the 

sagittal and frontal plane for experiment and simulation. Solid curve and curve with the 

shaded region show simulation and experiment, respectively. the vertical line shows the toe-

off moment.  
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Table 1. Mean   STD value for VPP variables (location and 2
R  value). Colored rows in the 

table show the mean R2 values at each speed, without considering subjects 1s  and 6s . 

Significant differences from 2 m/s, 3 m/s and 4 m/s running are indicated with ‘a’, ‘b’, and 

‘c’, respectively (p < 0.05). For statistical analysis, we used repeated measures ANOVAs 

with post hoc analysis and speed as the factor. 

 

Plane  VPP variables  2 m/s  3 m/s  4 m/s  5 m/s   

Sagittal    yR
V P P cm   16 8.6    1 8 .7 6 .5

a
    2 0 6 .1

a
    18 7.3     

  xR
V P P cm   0.86 1.6   1.2 1 .3   1 .3 8 1 .4

a
   1.1 2    

  yL
V P P cm   17 11.6    20 6 .2    2 1 .5 5 .8

a
    19 .5 6 .8     

  xL
V P P cm   1 3   1 .6 1 .4   1 .7 1 .5   1 .3 1 .7    

 linear fit (
R R

y a x b  )  4.65 12x    3.7 14x    3.14 16x    2.9 15x     

 linear fit (
L L

y a x b  )  5.2 10x    3.34 15x    2.6 17x    2.8 16x     

  
2

%
R

R   96.8 1 .6   98 .7 0 .4   98 .6 0 .5   98 .5 0 .6    

  
2

%
R

R   97 .1 1 .2   98 .6 0 .5   99 0.5   98 .8 0 .6    

  
2

%
L

R   97.7 2   98.5 0 .8   98 .6 0 .6   98 .6 0 .5    

  
2

%
L

R   98 1.5   98 .2 0 .6   98.8 0 .8   98 .6 0 .5    

Frontal    yR
V P P cm   46 33   40 25   33 26   33 28    

  zR
V P P cm   3 .9 3   5 .3 2 .6

a
   5 .2 2 .1

a
   6 2 .7

a
    

  yL
V P P cm   42 29   38 25   34 35   ,

2 2 1 7
a b

    

  zL
V P P cm   3.6 2 .3    6 2 .3

a
    6 .5 2 .7

a
    6 .2 1 .8

a
     

 linear fit (
R R

y a z b  )  8.93 10z    8 .05 2z    9 .6 16z    7.4 0 .1z     

 linear fit (
L L

y a z b  )  11 .5 10z    8.8 9z    8 .1 19z    6 .65 18z     

  
2

%
R

R   75 .3 30   81 24 .7   89 16   86 22    

  
2

%
R

R   83 20   89 10   91 12   94.5 5 .6    

  
2

%
L

R   87 19   82 .5 23   77 31   66.5 37.5    

  
2

%
L

R   91 13.5   87 20   89 10   80 21    
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Table 2. 3D model parameter 

Name  Symbol  Units  Literature  Chosen  Reference   

mass  m   k g   60-80  80  (Sharbafi et al., 2013; Budday et al., 

2012)  

leg stiffness  k   1
kN m

   16-26  18  (Sharbafi et al., 2013; McMahon and 

Cheng, 1990)  

leg damping  c   1
N sm

   400 1200   900   (Drama and Badri-Spröwitz, 2019)  

leg length  
0

l   m   16 26   1   (Sharbafi et al., 2013)  

angle of attack (sag.)     ( )   71 78   V B L A   (Sharbafi and Seyfarth, 2016; 

Abraham et al., 2015)  

angle of attack (fron.)     ( )    f z   V B L A   (Budday et al., 2012; Sharbafi and 

Seyfarth, 2016)  

dist. Hip-CoM  d   m   0 .1   0 .1   (Sharbafi et al., 2013; Sharbafi and 

Seyfarth, 2015)  

trunk inertia (sag.)  
s

J   2
k g m   4.8   4.8   (Sharbafi and Seyfarth, 2015)  

trunk inertia (front.)  
f

J   2
k g m   s

J   4.8   (Damavandi et al., 2010)  

trunk inertia (horiz.)  
h

J   2
k g m   0 .2

s
J   1   (Damavandi et al., 2010)  

gravitational 

acceleration  

g   2
m s

   9.81   9.81    
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Movie 1. A video of running performance with the proposed 3D model. 

Journal of Experimental Biology: doi:10.1242/jeb.243080: Supplementary  information
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