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SUMMARY 

The ankle extensor tendons of desert kangaroo rats store and return elastic energy in relation 

to hopping speed, recovering more energy at faster speeds.  

ABSTRACT 

Small bipedal hoppers, including kangaroo rats, are thought to not benefit from 

substantial elastic energy storage and return during hopping. However, recent species-specific 

material properties research suggests that, despite relative thickness, the ankle extensor 

tendons of these small hoppers are considerably more compliant than had been assumed. With 

faster locomotor speeds demanding higher forces, a lower tendon stiffness suggests greater 

tendon deformation and thus a greater potential for elastic energy storage and return with 

increasing speed. Using the elastic modulus values specific to kangaroo rat tendons, we sought 

to determine how much elastic energy is stored and returned during hopping across a range of 

speeds. In vivo techniques were used to record tendon force in the ankle extensors during 
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steady-speed hopping. Our data support the hypothesis that the ankle extensor tendons of 

kangaroo rats store and return elastic energy in relation to hopping speed, storing more at 

faster speeds. Despite storing comparatively less elastic energy than larger hoppers, this 

relationship between speed and energy storage offer novel evidence of a functionally similar 

energy storage mechanism, operating irrespective of body size or tendon thickness, across the 

distal muscle-tendon units of both small and large bipedal hoppers.  

 

 

INTRODUCTION 

Locomotion, while critical to the survival of terrestrial mammals, comes at an 

unavoidable, and often significant, energetic cost. To satisfy the demands of movement, 

animals must perform work to replace the energy lost to the environment. While positive work 

is contributed through active muscle contraction, overall work requirements can be reduced via 

energy storage and return mechanisms found in the spring-like elements of an animal’s 

musculoskeletal system (Alexander, 1984). Elastic structures, such as tendons and ligaments, 

convert kinetic and potential energy during stance into recoverable strain energy (Cavagna et 

al., 1977). This capacity for elastic energy storage and recovery has been broadly investigated, 

with highly effective “biological springs” present across a range of terrestrial mammals 

including horses (Biewener, 1998), kangaroos (Alexander and Vernon, 1975), and humans (Ker 

et al., 1987). Despite body plan variation across the aforementioned species, there is support 

for a connection between morphology and energy storage capacity, with long, thin tendons 

being better suited for elastic energy storage for a given force when compared to shorter, 

thicker tendons (Biewener, 1997; Biewener and Roberts, 2000). Accordingly, the magnitude of 

strain energy stored in a tendon results from the tendon’s stiffness and subsequent 

deformation as an external force is applied. Thus, while the specific mechanical demands of a 

locomotor task dictate the force that a tendon will experience during movement, the 

magnitude of elastic energy stored and returned is ultimately a reflection of the tendon’s 

material properties and overall geometry as these determine deformation (Ilton et al., 2018).  
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Several species of large bipedal hoppers boast incredibly efficient locomotion, in part 

due to specialized ankle extensor muscle-tendon units (MTUs) which have a large capacity to 

store and return elastic energy (Alexander and Vernon, 1975; Cavagna et al., 1977; Griffiths, 

1989; Bennett and Taylor, 1995; Kram and Dawson, 1998). Furthermore, oxygen consumption 

in both red kangaroos (Osphranter rufus) and tammar wallabies (Macropus eugenii) during 

steady-state hopping is independent of speed unlike all other terrestrial mammals which 

increase oxygen consumption with increasing speed (Dawson and Taylor, 1973; Baudinette et 

al. 1992; Kram and Dawson, 1998). These two observations provided indirect support for the 

functional role of elastic structures for determining the cost of transport for these animals 

(Alexander and Vernon, 1975; Biewener, 1995; Biewener et al., 1998; Baudinette and Biewener, 

1998). In contrast to large bipedal hoppers, smaller bipedal hoppers, such as kangaroo rats, are 

thought to not benefit from comparable elastic energy storage and return (Thompson et al., 

1980; Biewener et al., 1981; Biewener and Blickhan, 1988; Moore et al., 2017a). They are also 

thought to not store elastic energy in the same speed-dependent manner as kangaroos and 

wallabies (Biewener et al., 1981). Specifically, while these animals regularly perform complex 

locomotor behaviors, such as jumping vertically over 10-times standing hip height (Biewener 

and Blickhan, 1988), their comparatively thick tendons have been credited with the inability to 

exploit energetic benefits analogous to larger hoppers (Biewener et al., 1981; Biewener and 

Blickhan, 1988). Under the rationale of a greater area eliciting reduced stress for a given force, 

Biewener and Bertram (1991) supported this supposition by delineating a connection between 

the large hindlimbs of kangaroo rats and the requirement of an elevated safety factor to 

tolerate the large forces generated for rapid acceleration during predator evasion.  

While erratic, high-powered jumps undoubtedly remain key to survival for small 

hoppers such as kangaroo rats (Moore et al., 2017b; McGowan and Collins, 2018), recent 

material properties research has raised questions regarding the interpretation of previous data 

underlying the rationale for why kangaroo rats cannot significantly store and utilize elastic 

energy. Previously, to calculate strain energy storage, studies have relied on a generic elastic 

modulus value of 1 GPa (Alexander and Vernon, 1975; Biewener et al., 1981; Schwaner et al., 

2018), an assumed constant across mammalian tendon (Ker, 1981; Bennett et al., 1986; 
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Shadwick, 1990; Pollock and Shadwick, 1994b). However, in 2019, Javidi et al. revealed the 

ankle extensor tendons of desert kangaroo rats (Dipodomys deserti) to be considerably less stiff 

than originally thought, with elastic moduli values falling close to half the original 1 GPa 

assumption. In fact, several studies have shown elastic moduli values across other rodent 

species to be consistently and considerably lower than 1 GPa (Huang et al., 2003; Lavagnino et 

al., 2005; Legerlotz et al., 2007; LaCroix et al., 2013; Javidi et al., 2019a). Thus, while kangaroo 

rats do have relatively thicker tendons than larger bipedal hoppers (Biewener et al., 1981; 

Biewener and Blickhan, 1988), their tendons are considerably more compliant than had been 

assumed. Under the assumption of uniform loading, a decreased elastic modulus for these 

animals implies greater tendon deformation and thus increased potential for elastic energy 

storage and recovery via tendon recoil (Alexander, 1984). For instance, for a single jumping 

task, a recalculation of elastic energy return based on these species-specific values for elastic 

modulus resulted in almost 2.5 times more energy recovery than originally calculated 

(Schwaner et al., in-review). Moreover, because the force experienced by a tendon during 

locomotion is a result of force generation by the muscle (Roberts, 2016), the higher forces 

demanded by faster locomotor speeds elicits greater tendon deformation (Roberts and Azizi, 

2011; Farris and Sawicki, 2012; Lai et al., 2014) and consequently a greater capacity for strain 

energy storage and return.  

Our objective was to determine how much elastic energy is stored during hopping from 

estimates using direct force measurements and elastic modulus values specific to kangaroo rat 

tendons. Further, we hypothesize that elastic energy storage and return by the ankle extensor 

tendons of kangaroo rats will increase with hopping speed. To test this hypothesis, we recorded 

direct in vivo measurements of tendon force in the main distal MTUs of kangaroo rats - the 

plantaris longus (PL) and the gastrocnemii (GAS) - as animals hopped at a steady-state across a 

range of speeds. 
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MATERIALS AND METHODS 

Animals and training   

 Five adult desert kangaroo rats (Dipodomys deserti; average body mass  s.e.m., 111  

9.4 g) were used in this these experiments. Animals were wild caught in the Mojave Desert of 

southeast Nevada (USA) under permits from the Nevada Department of Wildlife and the 

Bureau of Land Management. Animals were trained over several weeks to hop on an enclosed, 

motorized treadmill at speeds of 1.3, 1.5, 1.7, and 1.9 ms-1; selected speeds represent the full 

range that these animals will hop steadily on a treadmill in a laboratory environment. The 

presence of a researcher’s hand at the rear of the treadmill exploited the animals’ natural 

escape behavior to encourage forward, steady-state hopping during training sessions. All 

experimental and animal husbandry protocols were approved by the University of Idaho 

Institutional Animal Care and Use Committee prior to the study.  

 

Experimental design  

In vivo equipment 

 For in vivo force recordings, a small strain gauge (Micro-Measurements Inc., Raleigh, NC, 

USA) was bonded to a custom-made E-shaped stainless-steel tendon buckle and surgically 

implanted on the animals’ ankle extensor tendons (Fig. 1). Tendon buckle force transducer 

design and methodology used in this study were modeled after previously established 

techniques (Walmsley et al., 1978; Loeb et al., 1985), a detailed description of which can be 

found in Biewener (1992). In desert kangaroo rats, the ankle extensor tendons consist of two 

distinct MTUs. The GAS tendon attaches to the lateral gastrocnemius (LG) and medial 

gastrocnemius (MG) muscles; the PL tendon attaches to the PL muscle. While the two are 

anatomically separate tendons enclosed in a common sheath, both the GAS and PL tendons 

share an attachment point on the calcaneus and possess uniform anatomical actions (Rankin et 

al., 2018; Javidi et al., 2019b). Due to size limitations, the sheath was left intact, the two 

tendons were treated as one structure, and a single buckle was implanted onto both.  
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Surgical procedures 

 Animals were placed into an induction chamber connected to an isoflurane vaporizer 

and anesthetized at 3%. After induction, animals were fitted with a respiratory mask and 

maintained at 1-2% isoflurane for the duration of the procedure. Electric clippers were used to 

shave the surgical field (top of head and left hindlimb). Shaved areas were sanitized with 

alcohol and an antiseptic solution; aseptic techniques were used for the entirety of the 

procedure. Incision locations were determined by morphological indicators and manual 

palpation. An initial incision was made parallel to the ankle extensor tendons. A second incision 

was made at the rear base of the animal’s skull. The tendon buckle, previously soldered to a 

custom-made micro-connector plug, was inserted into the incision at the base of skull and 

subcutaneously guided to the lower incision. The buckle was carefully slid onto the tendons, 

appropriate positioning and signal output of the buckle was confirmed, and the incision was 

closed with 3-0 suture. The micro-connector plug was attached to the top of the animal’s head 

with cyanoacrylate adhesive and 3-0 suture. Animals were administered an analgesic 

(meloxicam SR; 4 mg/kg body mass) and allowed a 24-hour recovery period with unrestricted 

food access.  

 

Data collection 

Following recovery, non-toxic white paint and black permanent marker were used to 

draw high-contrast markers on the animal’s skin over the following joint centers of rotations: 

metatarsophalangeal (MTP), ankle, knee, and hip. For in vivo data acquisition, a lightweight 

shielded cable was attached from the micro-connector plug on the animal’s head to recording 

equipment located adjacent to the experimental set-up. Animals were placed onto a plexiglass-

enclosed, motorized treadmill and baseline in vivo data were collected while animals sat still 

and inactive on the treadmill. Using the presence of a researcher’s hand towards the rear of the 

treadmill, animals were encouraged to hop at a steady-state while the treadmill was set to run 

at each of the four predetermined speeds. A high-speed video camera (Xcitex Inc., Woburn, 

MA, USA) collected video data at 500 Hz from a sagittal view. Buckle data were processed 

through a bridge amplifier (Micro-Measurements, Raleigh, NC, USA); data were sampled at 
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4000 Hz and collected with a PowerLab A/D board and LabChart software (ADInstruments Inc., 

Colorado Springs, CO, USA). An external pulse trigger was manually operated by a researcher 

throughout data collection for post-hoc synchronization of video and analog data. 

Representative data are shown in Fig. 2. Following in vivo data collection, appropriate tendon 

buckle placement was confirmed via dissection and the transducer was calibrated using 

established methods (Biewener, 1992). In vivo equipment was removed, and a variety of 

morphological measurements were recorded. Length measurements (LG, MG, PL: muscle 

length, fascicle length; GAS tendon length; PL tendon length; femur length; tibia length; 

metatarsal length; toe length; knee moment arm, ankle moment arm) were collected via digital 

calipers to a resolution of 0.01 millimeters. Mass measurements (LG, MG, PL: muscle mass; GAS 

tendon mass; PL tendon mass) were collected via an electronic balance to a resolution of 0.001 

grams.  

 

 

Data analysis  

Kinematics  

 Trials, containing five hops each, were selected for analysis based on in vivo signal 

quality, as well as locomotor performance in the form of consecutive, fully bipedal hops. For 

each individual animal, two trials were analyzed at each of the four speeds, resulting in eight 

total trials per animal. Trials were processed on an individual basis to calculate the mean values 

for an individual animal at each speed. For each trial, foot-on and foot-off times were manually 

collected from the video data using ProAnalyst software (Xcitex Inc., Woburn, MA, USA). These 

times were used to determine gait parameters including stride frequency (Hz), ground contact 

time (s), and duty factor (fraction of hop cycle on the ground). For joint kinematic analysis, high-

contrast joint markers in the video data were digitized via DeepLabCut open-source software 

(Mathis et al., 2018) to obtain 2D coordinate data for the MTP, ankle, knee, and hip joints. 

Coordinate data were filtered with a fourth order low-pass Butterworth filter with a cutoff 

frequency of 30 Hz and used to calculate joint angle changes for the ankle and knee. To allow 

comparison across speeds and individual animals, kinematics time scales were normalized to 
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cycle time. Data analysis was performed in MATLAB using a custom-written analysis script 

(2018b, MathWorks, Natick, MA, USA).  

 

Tendon stress, tendon elastic strain energy, and percent energy recovery  

 Tendon cross-sectional area and tendon volume were calculated independently for the 

GAS and PL tendons (see Table 1). Tendon cross-sectional area (CSAt) was calculated from 

tendon length, tendon mass, and an assumed tendon density of 0.00112 g mm-3 (Ker, 1981). 

Tendon volume (Vt) was calculated via CSAt and effective tendon length (Leff) (Vt = CSAt*Leff) 

(Alexander and Vernon, 1975; Biewener, 1995). Effective tendon length, representing the 

length of tendon that undergoes strain, was determined by subtracting muscle fiber length 

(Lfiber) from the product of muscle tendon unit length (LMTU) multiplied by cosine of the mean 

fiber pennation angle (Leff = LMTU – Lfiber*cos). Tendon stress (t) was also determined 

independently for the two tendons using tendon cross-sectional area and force (F) recordings 

from the buckle transducer (t = F/CSAt). Because the transducer recorded total force acting 

across both tendons, we partitioned force for the GAS and PL tendons by their relative muscle 

physiological cross-sectional areas (PCSA) (lateral and medial gastrocnemius for the GAS 

tendon; plantaris longus for the PL tendon); see discussion for further details. Individual muscle 

PCSA was calculated as: 

PCSA = (m*cos)/(m*Lfiber)      (1) 

where m is muscle mass, Lfiber is muscle fiber length,  is muscle fiber pennation angle, and an 

assumed skeletal muscle density (m) of 0.001056 g mm-3 (Mendez and Keys, 1960).  

After determining muscle PCSA-weighted force contributions, we calculated peak 

tendon stresses for each tendon. We continued to treat the GAS and PL tendons as 

independent units for the subsequent strain energy return calculations. Elastic strain energy 

return was estimated according to the following equation:  

     (
  
 

 
)               (2) 

where U represents the strain energy returned for a single tendon, t represents tendon stress, 

E represents tendon elastic modulus, and Vt represents tendon volume. Tendon hysteresis, 

which assumes a 7% energy recovery loss, is represented by the 0.93 constant (Bennett et al. 
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1986; Shadwick, 1990; Biewener et al., 1998). Based on the results of our recent study, the GAS 

and PL tendons of D. deserti had elastic modulus values of 330 MPa and 528 MPa, respectively 

(Javidi et al. 2019a). These unique elastic moduli were used to calculate strain energy return 

independently for the two ankle extensor tendons. Resulting energy return values were then 

summed to represent total strain energy return in millijoules for the combined MTU for one leg.  

 To determine the contribution of elastic energy return to overall cost of locomotion for 

these animals, we calculated relative energy recovery as a percentage. Percent recovery, after 

normalizing for body mass and cycle time, was calculated as strain energy returned per hop 

divided by total energy cost per hop, multiplied by 100 (% recovery = 100*(Ereturned/Ecost)). 

Energy cost per hop was estimated via mechanical power requirements for kangaroo rats 

previously published by our lab in Gutmann et al. (2013): 

   P = 0.656v+0.649      (3) 

where P represents mechanical power (W/kg) and v represents forward velocity (ms-1). 

 

Statistics  

 Statistical tests were performed using R statistical software 3.3.2 (R Core Team, The R 

Foundation for Statistical Computing, Vienna, Austria). To test for differences in our dependent 

variables across hopping speeds, we used linear mixed-effects modeling (via the R package 

LME4 (Bates et al., 2015)) with hopping speed assigned to fixed effect and individual to random 

effect. Dependent variables included in the model were tendon strain energy return, peak 

tendon force, peak tendon stress, stride frequency, ground contact time, duty factor, peak 

ankle flexion, peak ankle extension, peak knee flexion (Table 2). Post-hoc pairwise comparisons 

between speed conditions were then performed with a Holm-Bonferroni P-value correction. For 

all tests, statistical significance was assessed based on a P-value of  0.05. To use as a 

representation of pooled data, measurements were averaged per animal to obtain a single 

value for each variable at each of the four speeds. All values are reported as means  SD, unless 

otherwise indicated.  
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RESULTS 

Gait parameters and joint kinematics  

 Gait parameters per condition are shown in Table 2. Stride frequency was independent 

of speed (P=0.2578). Duty factor decreased as hopping speed increased (P=0.0022). There was 

a significant relationship between ground contact time and hopping speed, with stance phase 

decreasing as speed increased (P=0.0001). Angle changes for both the ankle and knee displayed 

statistically uniform patterns across speed conditions (Fig. 3). During stance phase, the ankle 

joint flexed then extended (Fig. 3; top). Average peak flexion and average peak extension at the 

ankle joint were consistent across conditions (P=0.1124; P=0.1374). During stance phase, the 

knee joint primarily underwent flexion followed by a brief period of extension directly prior to 

take-off (Fig. 3; bottom). Average peak flexion at the knee joint during hopping was 

independent of speed (P=0.5916). 

 

Tendon force, stress, elastic strain energy, and percent recovery 

 As hopping speed increased, peak forces recorded from the ankle extensor tendons also 

increased, on average, from 8.16  1.67 N at 1.3 ms-1 to 10.19  2.20 N at 1.9 ms-1 (Table 2; 

N=5). The relationship between peak forces and hopping speed was significant (P=0.0002). Data 

illustrating this pattern are shown in Fig. 2. Also shown in Fig. 2 is the relationship between 

hopping speed, ground contact time, and tendon force. As hopping speed increased, ground 

contact time decreased, and peak force increased. Consequently, peak tendon stress, shown in 

Table 2 as an average for the GAS and PL tendons across all animals in the study, significantly 

increased with hopping speed (P=0.0002). Across all animals, elastic strain energy return from 

the ankle extensor tendons increased significantly with hopping speed (P=0.0003; Table 2; Fig. 

4). Under the assumption of hindlimb symmetry, strain energy values reported in Table 2 and 

Fig. 4 represent summed energy return for the ankle extensor tendons of both legs (N=5). 

Percent energy recovery increased with hopping speed, ranging from approximately 16% at 1.3 

ms-1 to 21% at 1.9 ms-1 (Fig. 4; P=0.0166).  
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DISCUSSION 

Our data support the hypothesis that the ankle extensor tendons of kangaroo rats store 

and return greater levels of elastic energy at faster hopping speeds. With a 50% increase in 

hopping speed (1.3 to 1.9 ms-1), strain energy return increased almost 70% (3.79 to 6.4 mJ). Our 

energy storage estimates indicate that the relationship between speed and elastic energy 

storage in these small hoppers align well with that of larger bipedal hoppers, though to a lesser 

magnitude (as detailed below).  

 

Kinematics  

 Joint angle changes over the stance phase remained consistent across conditions for 

both the ankle and knee joints, with patterns of knee flexion during hopping mirroring those of 

ankle flexion. Ground contact time decreased with increased hopping speed (Table 2). When 

comparing between the slowest (1.3 ms-1) and fastest (1.9 ms-1) speed trials shown in 

representative data (Fig. 2), a 46% increase in hopping speed elicited an approximately 20 ms 

decrease in ground contact time, while force increased almost 40%. The consistency of stride 

frequency across hopping speeds aligns with what has been shown previously for both large 

and small bipedal hoppers (McGowan and Collins, 2018).  

 

Elastic energy storage 

We found that elastic energy recovery increases with hopping speed, likely playing a 

larger role during steady-state hopping of kangaroo rats than previously indicated. Based on 

published data (Gutmann et al., 2013), and after normalizing for body mass and cycle time, we 

calculated average percentage recovery during hopping to range from 16% at 1.3 ms-1 to 21% at 

1.9 ms-1. With increased hopping speed, tendon stress, strain energy storage, and percentage 

energy recovery all correspondingly increased. In a comparable study of kangaroo rats, no 

relationship was found between hopping speed and percentage energy recovery (Biewener et 

al., 1981). In that study, under the assumption of equal force contributions by the plantaris and 

gastrocnemius muscles, the authors estimated that an average 14% energy is recovered via the 

ankle extensor tendons during hopping across a speed range of 0.9 to 3.1 ms-1. These 
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calculations relied on an assumed elastic modulus of 1.2 GN/m2 and did not account for tendon 

hysteresis. At our slowest hopping speed, our data suggest that strain energy storage in the 

ankle extensor tendons accounts for similar percentage energy recovery as that indicated by 

Biewener and colleagues. In contrast, we found a significant relationship between hopping 

speed and percentage energy recovery (Fig. 4). If we were to linearly extrapolate out the 

correlation seen in our data to the substantially higher speeds of 3.1 ms-1 tested by Biewener et 

al. (1981), we would predict these animals return almost twice the amount of elastic energy 

previously reported, recovering around 30% energy during hopping. Further, kangaroo rats 

have been observed hopping much faster in the wild, with recorded speeds up to 8.3 ms-1 

(Djawdan and Garland, 1988). Faster hopping speeds, while currently unable to be replicated in 

a controlled, laboratory environment, would suggest greater peak tendon stresses and thus 

greater elastic energy return than described here.  

A challenge of conducting a study on an animal of this size is the constraint of a single 

tendon buckle on both ankle extensor tendons. Because we were unable to determine exact 

fractional forces exerted by the GAS and PL tendon, we relied on muscle PCSA weighting to 

partition the force and subsequently calculate strain per individual tendon based on its specific 

elastic modulus value reported by Javidi et al. (2019a). Though commonly used, this method 

allows for potential inaccuracy as equal activation of the muscles must be assumed (Maas et al., 

2004; Herzog, 2017). The LG, MG, and PL muscles are short-fibered, pennate, ankle extensors 

(Rankin et al., 2018) composed primarily of fast-twitch muscle fiber types (Ross and Meyers, 

2021). The muscles’ similarities in anatomical action and fiber type composition may suggest 

further parallels in terms of force contribution during hopping. However, recent research has 

indicated PCSA alone may be inadequate for accurately partitioning force contribution of 

individual muscles across a functional group under some conditions (Javidi et al., 2020). This 

study, looking specifically at the ankle extensor muscles of kangaroo rats, showed that 

individual muscle force contribution is more strongly influenced by muscle state, such as fiber 

length, fiber pennation angle, and thus fiber shortening velocity, rather than solely muscle 

PCSA. Furthermore, the findings of Javidi et al. (2020) found that force contribution from the PL 

muscle could be smaller than that of the LG or MG despite larger PCSA depending on joint 
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velocity. To accommodate for potential inaccuracies due to force partitioning techniques used 

in the current study, we conducted a local sensitivity analysis in which assumed GAS to PL ratios 

of force contribution spanned a range from total force contribution via the GAS tendon, to total 

force contribution via the PL tendon. Even at the extremes of GAS-only and PL-only force 

contribution ratios, both of which produced variation in average percent energy recovery 

across conditions (GAS-only: 5-15% increase; PL-only: 5-10% increase), results of the analysis 

broadly support the robustness of our primary conclusion that elastic energy return increases 

linearly with hopping speed (GAS-only: P=0.0026; PL-only: P=0.0018). 

The connection between hopping faster and storing more strain energy is well-

evidenced for larger bipedal hoppers, such as kangaroos and wallabies, with the bulk of strain 

energy storage occurring in their hindlimb tendons (Alexander and Vernon, 1975; Biewener and 

Baudinette, 1995; Biewener et al., 1998). Although our data suggest that the distal MTUs of 

kangaroo rats function in a similar fashion to that of larger hoppers, the magnitude of elastic 

energy returned by their ankle extensor tendons is comparatively less. Tammar wallabies 

(Macropus eugenii) are capable of substantial elastic energy recovery, experiencing close to 

45% metabolic savings due to this energy storage during steady-state hopping at 6 ms-1 

(Biewener and Baudinette, 1995; Biewener et al., 1998). Because of body size and speed 

differences, we used published data (Gutmann et al., 2013) to normalize by leg length and 

determine equivalent hopping speeds for D. deserti and M. eugenii. At a Froude number of 2.0, 

kangaroo rats hopping at 1.56 ms-1 move in a dynamically similar fashion to wallabies traveling 

at 3.50 ms-1. When normalized for body mass, this equates to an approximate energy return of 

0.04 J/kg for kangaroo rats compared to 0.30 J/kg for wallabies (Biewener et al., 1998), 

indicating that kangaroo rats return less elastic energy than wallabies when hopping at equal 

Froude numbers. 

Effective elastic energy recovery in large macropodids, which has historically been 

credited, at least in part, with the unique decoupling of hopping speed and oxygen 

consumption, is not exclusive to these animals. Kangaroo rats do not store equivalent 

magnitudes of elastic energy, recovering around 21% of the cost of transport during hopping 

whereas wallabies recover close to 45%. Although kangaroo rats do not exhibit the energetic 
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decoupling mechanism mentioned above (Thompson et al., 1980), comparable magnitudes of 

elastic energy storage have been evidenced across a range of terrestrial species including 

horses with 40% recovery (Biewener, 1988b), humans with 35% recovery (Ker et al., 1987), 

camels with 45% recovery (Alexander et al., 1982), and turkeys with 60% (Roberts et al., 1997). 

While more efficient strain energy storage is undoubtably a contributing factor, the rivaling 

energy storing capabilities possessed by these species, paired with their lack of this uniquely 

specific metabolic benefit, suggest that tendon recoil cannot fully explain the decoupling of 

hopping speed and oxygen consumption in kangaroos and wallabies (Biewener et al., 1998). 

This discrepancy, while not a novel idea, does indicate future research is needed to explore 

alternative explanations for why a wallaby with 45% energy recovery during hopping benefits 

from this mechanism, while a horse recovering up to 40% does not (Biewener, 1998b). One 

caveat of this interpretation is the multitude of ways in which one can estimate percent energy 

recovery. Depending on the assumptions implicit in the calculations, direct comparison of these 

values across studies should be approached with caution.   

The disconnect between strain energy storage and apparent metabolic benefit implies 

that tendon compliance may be more linked to locomotor function, playing a role during 

hopping that is unrelated to a prioritization of strain energy storage via elastic recoil. Tendon 

compliance has additionally been shown to allow a decoupling mechanism in which muscle 

fascicles may shorten at a different velocity than that of the whole muscle-tendon unit 

(Roberts, 2002; Lichtwark and Wilson, 2005; Wakeling et al., 2011). This mechanism was 

recently shown to allow optimal muscle power output during jumping by kangaroo rats, 

permitting fascicles to contract at shortening velocities for optimal power generation with a 

longer duration (Schwaner et al., in-review). While playing a functional role during both 

hopping and jumping, evidence seems to suggest that the relatively compliant tendons of 

desert kangaroo rats may be more important in jumping rather than hopping. When 

considering the selective pressures acting on these animals in their natural habitat, an ability to 

successfully evade predators, which is a direct reflection of jumping ability, has an arguably 

stronger influence on their musculoskeletal evolution than the pressure to increase foraging 

efficiency. Despite not typically traveling long distances, and thus lacking the underlying 

Jo
ur

na
l o

f E
xp

er
im

en
ta

l B
io

lo
gy

 •
 A

cc
ep

te
d 

m
an

us
cr

ip
t



influence to prioritize anatomy suited for economy, it is important to consider what locomotor 

efficiency realistically means for small mammals such as these kangaroo rats. Energetically 

efficient locomotion may initially appear to be a priority for small mammals due to their 

relatively elevated mass-specific cost of transport when compared to larger mammals (Taylor et 

al., 1970; Taylor, 1997). But, due to the metabolic impacts of possessing a substantially higher 

surface area to body mass ratio than their larger counterparts, the resting energy requirements 

of a small mammal far surpass those of a large one. In this context, locomotor efficiency, and 

particularly locomotor efficiency as a result of elastic energy storage and return, may simply be 

less impactful for smaller mammals as the relative discrepancy between their cost to move and 

their cost of simply existing may fall short of that incurred by larger mammals.  

 

Tendon material properties  

A secondary motivation of the study was to examine the impact of using commonly 

assumed generic elastic modulus data for mammalian tendon (Ker, 1981; Bennett et al., 1986; 

Shadwick, 1990; Pollock and Shadwick, 1994b) versus recent species-specific measurements of 

material properties for kangaroo rat ankle extensor tendons (Javidi et al., 2019a). Based on 

these new tendon modulus values, our data support the advantageous role of increased tendon 

compliance for elastic energy recovery, at least in our desert kangaroo rat model. Due to 

variation in the tendon stiffnesses reported by Javidi et al. 2019a., we performed a sensitivity 

analysis to explore how using a range of tendon stiffnesses, rather than single mean values, 

would influence our energy storage results. When calculated across a range of elastic modulus 

values, derived from the standard deviations reported across individuals in Javidi et al. 2019a 

(approximately  100 MPa for the PL;  50 MPa for the LG), strain energy return followed a 

similar pattern of increased energy return at faster hopping speeds. Likewise, energy return 

values calculated from the experimentally measured range of stiffnesses remained consistent 

with those determined in original calculations (P=0.0041). While statistically uniform, energy 

return did vary across tendon stiffnesses. For instance, the lowest (GAS: 280 MPa; PL: 428 MPa) 

moduli values elicited an average 1 to 2 mJ increase in energy return, while the highest stiffness 
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values (GAS: 380 MPa; PL: 628 MPa) elicited an average decrease in energy return of 0.5 mJ 

across speed conditions. 

While following this general pattern, the actual magnitude of strain energy being stored 

and recovered by these animals in their hindlimb tendons does not come close to that of the 

dynamically similar kangaroos and wallabies. Despite an initial assumption that the lower 

tendon modulus revealed by Javidi et al. would primarily function to offset energy storage 

limitations inherent to possessing thick tendons in relation to body size, a morphological 

attribute which has been shown to decrease the capacity for energy storage and recovery 

during hopping (Biewener, 1997; Lichtwark and Wilson, 2006), our results suggest that an ideal 

tendon property has a stiffness that balances energy storage during hopping with optimal 

power generation during jumping. Additionally, due to a lack of understanding of the 

mechanical role of elastin in tendons, a growing body of literature hints at large variations in 

tendon structure and material properties, especially in tendons with high functional demands 

such as the ankle extensors (Eekhoff et al., 2017; Eekhoff et al., 2021). Going forward, to truly 

understand the species-level specificities generated by different tendon properties, our results 

broadly highlight the need to consider the diversity of mammalian tendon properties in future 

studies. 

 

Conclusion  

The ankle extensor tendons of kangaroo rats store and return elastic energy in relation 

to hopping speed, storing more at faster speeds. In spite of differences in body size and tendon 

thickness, our results support a common functional trend of similar elastic energy storage 

mechanisms across small and larger bipedal hoppers. Subsequently, we emphasize the 

influence of not only species-level variation in tendon material properties, but also the 

biological relevance of, and mechanical demands dictated by, specific locomotor tasks on strain 

energy storage capacity.  
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Figures and Tables 

 

 

 

Figure 1. Schematic drawing of D. deserti showing tendon buckle force transducer design and in 

vivo placement on the ankle extensor tendons (gastrocnemius + plantaris).  
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Figure 2. Average force recordings from the ankle extensor tendons (GAS + PL) across 

individuals (N = 5). Data represents mean force for a single stride across four hopping speeds. 

Stance phase per speed condition is indicated via dashed lines. Standard deviations are omitted 

for visual clarity.  
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Figure 3. Average ankle (top) and knee (bottom) joint angle changes versus time (shown as 

percentage of gait cycle) for a single stride across hopping speeds. Data represents means 

across individuals (N = 5). Standard deviations are indicated via dashed lines. Grey area indicates 

average stance phase duration.  
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Figure 4. Histogram of strain energy return via the ankle extensor tendons (GAS + PL) of D. 

deserti (N = 5) as a function of hopping speed, with average estimated percent energy recovery 

listed above each condition. Values (mean  s.e.m.) represent summed energy return for the 

ankle extensor tendons of both legs.  

 

 

  

Table 1. Morphological data used to partition force and calculate tendon stress and tendon elastic energy storage. 

 Gastrocnemius (GAS) Plantaris (PL) 

Animal 
Tendon CSA 

(mm2) 
Tendon 

Volume (mm3) 
Muscle PCSA 

(mm2) 
Tendon CSA 

(mm2) 
Tendon 

Volume (mm3) 
Muscle PCSA 

(mm2) 

1 0.98 37.31 151.84 0.37 12.00 66.49 

2 1.33 50.01 131.80 0.37 14.31 81.91 

3 1.55 53.62 189.68 0.54 17.94 63.52 

4 1.19 44.38 120.08 0.49 15.37 39.26 

5 1.22 48.01 152.71 0.70 25.30 58.16 
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Table 2. Tendon, kinematic, and gait parameters during level hopping. 

Speed 1.3 ms-1 1.5 ms-1 1.7 ms-1 1.9 ms-1 N P 

GAS+PL Tendon       

Peak force (N) 8.16  1.67 9.35  1.55 9.59  1.72 10.19  2.20  5 * 

Peak stress (MPa) 4.91  1.13 5.65  1.28  5.84  1.62 6.50  1.79 5 * 

Energy return (mJ)  3.79  1.57 4.91  1.56 5.28  2.17 6.40  2.71 5 * 

Energy Recovery (%) 15.68  7.50 18.67  6.65 19.20  8.56 20.74  8.65 5 * 

Joint Kinematics       

Peak ankle flexion 98.28  1.69 97.92  3.14 97.53  2.44 100.76  1.82  5  

Peak ankle extension 112.75  4.13 111.08  3.38 112.64  3.21 115.02  3.74 5  

Peak knee flexion 71.09  3.74 72.80  4.15 70.58  3.83 72.02  4.33 5  

Gait Parameters       

Stride frequency (Hz) 6.69  0.470 6.78  0.480 6.92  0.423 6.93  0.374  5  

Ground contact time (s) 0.062  0.009 0.058  0.006 0.054  0.004 0.051  0.007 5 * 

Duty factor (fraction of 

hop cycle on the ground) 
0.41  0.046 0.39  0.038 0.37  0.041 0.35  0.061 5 * 

Values are means  SD *P-value  0.05  
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