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Metal pollutants have additive negative effects on honey bee cognition 
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Summary statement: 

Honey bees displayed reduced learning and memory performance following acute exposure to 

arsenic, copper or lead. Exposure to combinations of these metals had additive effects. 

 

 

Abstract 

 

Environmental pollutants can exert sublethal deleterious effects on animals. These include 

disruption of cognitive functions underlying crucial behaviours. While agrochemicals have 

been identified as a major threat to pollinators, metal pollutants, which are often found in 

complex mixtures, have so far been overlooked. Here we assessed the impact of acute 

exposure to field-realistic concentrations of three common metal pollutants, lead, copper, 

arsenic, and their combinations, on honey bee appetitive learning and memory. All treatments 

involving single metals slowed down learning and disrupted memory retrieval at 24 h. 

Combinations of these metals had additive negative effects on both processes, suggesting 

common pathways of toxicity. Our results highlight the need to further assess the risks of 

metal pollution on invertebrates. 
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Introduction 

 

Metal pollution is of increasing concern for both ecosystem and public health (Nriagu and 

Pacyna, 1988). Over the last century, the widespread use of metals in domestic, industrial and 

agricultural applications (Bradl, 2005) has considerably elevated their concentrations in water 

(Mance, 1987) and terrestrial habitats (Krämer, 2010; Su et al., 2014) up to potentially toxic 

levels.  

Pollinators, such as honey bees, are directly exposed to metal pollutants when foraging 

on contaminated nectar and pollen (Perugini et al., 2011; Xun et al., 2018), and while flying 

through air containing suspended particles (Thimmegowda et al., 2020). Metals accumulate in 

the bodies of adults (Giglio et al., 2017) and larvae (Balestra et al., 1992), as well as in hive 

products (Satta et al., 2012). For instance, bioaccumulation of arsenic (As), copper (Cu) and 

lead (Pb), resulting from metal production industries (Kabir et al., 2012) and mining (Khaska 

et al., 2018; Lee et al., 2005), is common in both honey bees (Badiou-Bénéteau et al., 2013; 

Giglio et al., 2017; Goretti et al., 2020) and their honey (Pisani et al., 2008; Terrab et al., 

2005). 

The deleterious effects of metals on humans (Tchounwou et al., 2012) and some 

model animals (mice: Cobbina et al., 2015; flies: Doğanlar et al., 2014) are well-known. As, 

Cu, Pb and other metals have neurotoxic effects that induce neural and neuromuscular 

alterations, sensory impairments and many other behavioural dysfunctions (Chen et al., 2016). 

Deficits in cognition and memory have been reported for As (e.g. humans: Tolins et al., 2014; 

mice: Tyler et al., 2018; Wu et al., 2006), Pb (e.g. mice: Anderson et al., 2016; humans: 

Mason et al., 2014) and Cu (e.g. mice: Lamtai et al., 2020; Pal et al., 2013; flies: Zamberlan, 

2020). Recent studies showed that low doses of Pb (Monchanin et al., 2021a) and selenium 

(Se) (Burden et al., 2016) also impair behaviour and cognition in honey bees, suggesting a 

widespread impact on pollinators. So far, however, very little attention has been given to the 

potential combined effects of co-exposure to different metals (Monchanin et al., 2021b).  

Interactions among stressors are commonly classified as antagonistic (when the effect 

of one stressor reduces the effect of the other one), additive (when stressors have simple 

cumulative effects) or synergistic (when stressors together have a greater effect than the sum 

of their individual effects) (Folt et al., 1999). Additive effects of As, Cu and Pb have been 

described for humans (Lin et al., 2016), rats (Aktar et al., 2017; Mahaffey et al., 1981; 

Schmolke et al., 1992) and fishes (Verriopoulos and Dimas, 1988). In rats, for example, co-

exposure to Pb and As disrupted brain biogenic amine levels (Agrawal et al., 2015). In 
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humans, it has been hypothesized that combined exposure to Pb and As, or other metal 

pollutants, have additive or synergistic toxic responses leading to cognitive dysfunction (Karri 

et al., 2016). To our knowledge, two studies have addressed the impact of metallic cocktails 

on bee physiology. Honey bees simultaneously exposed to Pb, cadmium (Cd) and Cu 

accumulated significant levels of these metals in their bodies and had lower brain 

concentrations of dopamine compared to control honey bees (Nisbet et al., 2018). Cd and Cu 

exerted a weak synergistic effect on honey bee survival (Di et al., 2020). However, none of 

these studies investigated potential effects of combined exposure on cognition. 

Here we compared the effects of exposure to single metals or ecologically relevant 

combinations of these metals on honey bee learning and memory. We hypothesised that 

combinations of metals may have synergistic negative effects, as has been found with 

pesticides (Yao et al., 2018; Zhu et al., 2017). We tested individual honey bees in a standard 

protocol of proboscis extension reflex (PER) conditioning following acute exposure to As, Pb 

and Cu or a combination of them. We tested three concentrations of As, considered the most 

toxic substance (ATSDR, 2019), and added one concentration of Cu or Pb (binary mixtures), 

or both (tertiary mixture), to reach the molarity of the As solutions. 

 

Materials and methods 

 

Metal solutions 

Arsenic (NaAsO2), lead (PbCl2) and copper (CuCl22H2O) were purchased from Sigma-

Aldrich Ltd (Lyon, France) and diluted in 50% (w/v) sucrose solution. Control honey bees 

were fed 50% sucrose solution. Three concentrations of As were used (Table 1): a low 

concentration (0.13 µM) corresponding to the maximal permissible value in drinking water 

(0.01 mg.L
-1

) (Codex Alimentarius, 2015), a high concentration (0.67 µM) corresponding to 

half the maximal permissible value in irrigation water (0.1 mg.L
-1

) (Ayers and Westcot, 

1994), and an intermediate concentration (0.40 µM). This range of concentrations was 

reported in water sampled from polluted areas (e.g. mining sites) and in honey (Table S1). For 

Pb and Cu, we chose 0.27 µM (0.055 mg.L
-1

of Pb and 0.017 mg.L
-1 

of Cu) so that the binary 

combinations (As 0.13 µM + Cu 0.27 µM or As 0.13 µM + Pb 0.27 µM) could be compared 

to the As intermediate concentration (0.40 µM), and the tertiary combination (As 0.13 µM + 

Pb 0.27 µM + Cu 0.27 µM) to the As high concentration (0.67 µM) (Table 1). These 

concentrations of Pb and Cu have also been reported in honey samples (Table S1). The mass 

consumed for As and the concentrations for Cu and Pb fell within sublethal ranges for the 
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honey bee: the LD50 of elemental As for NaAsO2 ranged from 0.330 to 0.540 µg/bee (Fujii, 

1980), the LC50 of Cu is 72 mg.L
-1 

(Di et al., 2016) and of Pb is 345 mg.L
-1 

(Di et al., 2016).  

 

Bee exposure to metals 

We collected honey bees (Apis mellifera) returning from foraging trips at the entrance of five 

different hives in mornings during August 2020. We anesthetised the bees on ice and 

harnessed them in plastic tubes, secured with tape and a droplet of wax at the back of the head 

(Matsumoto et al., 2012). We tested all bees for intact proboscis extension (PER) by 

stimulating their antennae with 50% sucrose. We then fed the responding honey bees 5 µL of 

50% sucrose solution (see Table 1), making sure they consumed the whole droplet, and left 

them to rest for 3 h in the incubator (temperature: 252°C, humidity: 60%). Honey bees that 

did not respond to the sucrose solution were discarded. 

 

Absolute learning  

Prior to conditioning, we tested all honey bees for PER by stimulating their antennae with 

50% sucrose solution, and kept only those that displayed the reflex. We then performed 

olfactory absolute conditioning according to a standard protocol using an automatic stimulus 

delivery system (Aguiar et al., 2018). Honey bees had to learn to respond to an olfactory 

conditioned stimulus (CS, 1-nonanol, Sigma-Aldrich Ltd, Lyon, France) reinforced with the 

unconditioned stimulus (US, 50% sucrose solution), over five conditioning trials with a ten-

minute inter-trial interval. Each trial (37 s in total) began when a bee was placed in front of 

the stimulus delivery system, which released a continuous flow of clean air (3,300 mL.min
-1

) 

to the antennae. After 15 s, the odour was introduced into the airflow for 4 s, the last second 

of which overlapped with sucrose presentation to the antennae using a toothpick. This was 

immediately followed by feeding for 4 s by presenting the toothpick to the proboscis. The bee 

remained for another 15 s under the clean airflow. We recorded the presence or absence (1/0) 

of a conditioned PER in response to the odorant presentation during each conditioning trial. 

Honey bees spontaneously responding in the first conditioning trial were discarded from the 

analysis. The sum of conditioned responses over all trials provided an individual acquisition 

score (between 0 and 4), and honey bees responding at the last trial were categorized as 

learners. 
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Long-term memory  

Only honey bees that had learnt the task were kept for the analysis of memory performance. 

After conditioning, these honey bees were fed 15 µL of 50% sucrose solution, left overnight 

in the incubator, and fed another 5 µL of sucrose solution the following morning. Three hours 

later (24 h post-conditioning), we performed the retention test, consisting of three trials 

similar to conditioning except that no sucrose reward was presented. In addition to the odour 

used during the conditioning (CS), we presented two novel odours, in randomized order, to 

assess the specificity of the memory: nonanal was expected to be perceived by honey bees as 

similar to 1-nonanol, while 1-hexanol was expected to be perceived differently (Guerrieri et 

al., 2005). We recorded the presence or absence (1/0) of a conditioned PER to each odorant at 

each memory retention trial. We classified honey bees according to their response patterns: 

response to the CS only, response to the CS and the similar odour (low generalization level), 

response to all odours (high generalization level), no or inconsistent response.  

 

Statistics 

We analysed the data using R Studio v.1.2.5033 (RStudio Team, 2015). Raw data are 

available in Dataset S1. We performed binomial generalised linear mixed-effects models 

(GLMM) (package lme4; Bates et al., 2015), with hive and conditioning date as random 

factors and treatment as a fixed effect. Using the GLMMs, we evaluated whether molarity or 

treatment impacted the initial response to antennal stimulation, the spontaneous response in 

the first conditioning trial, the response in the last trial, the response to each odorant during 

the memory test, the proportion of honey bees per response pattern in the retention test, and 

the survival at 24 h. Acquisition scores were standardised and compared with GLMMs using 

Template Model Builder (Brooks et al., 2017). For all response variables, we compared (1) 

the treated groups to the control, (2) groups exposed to concentrations of the same molarity 

(e.g. Med [As], [As+Cu] and [As+Pb]), (3) the separate and joint effects of the treatments 

(e.g. Low [As], [Cu] and [As+Cu]) in order to identify interactive effects (antagonistic, 

additive, synergistic). 
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Results and discussion 

 

Exposure to metals did not impact appetitive motivation  

The proportion of honey bees that responded to the initial antennal stimulation with sucrose 

was similar among treatments (GLMM: p>0.05). Therefore, treatment did not affect 

appetitive motivation or sucrose perception. Consistent with our observations, the ingestion of 

similar concentrations of Pb and Cu had no effect on responsiveness to increasing 

concentrations of sucrose (Burden et al., 2019). By contrast, Di et al. (2020) found that honey 

bees exposed to increasing concentrations of a mixture of Cu and Cd exhibited a decreased 

ability to distinguish sucrose concentrations, but this may be explained by the much higher (at 

least 600 times) concentrations used in that study. Thus, in our conditions any impact on 

appetitive learning is unlikely due to a decreased motivation for sucrose or sucrose 

perception.  

 

Individual and joint exposures to metals reduced learning performance  

Two out of the 381 honey bees submitted to the absolute learning task spontaneously 

responded to the first odour presentation and were therefore discarded. In all groups, the 

number of honey bees showing the conditioned response increased over trials, thus showing 

learning (Fig. 1A). However, fewer honey bees exposed to metals learned the task when 

compared to controls (GLMM: p<0.05, except for Low [As], p=0.082). Accordingly, the 

acquisition scores of honey bees from all treatments were lower than controls (Fig. 1B). 

Honey bees exposed to Med [As] (GLMM: -0.610±0.246, p=0.013), High [As] (GLMM: -

0.639±0.241, p=0.008) and [As+Cu+Pb] (GLMM: -0.592±0.244, p=0.015) had acquisition 

scores significantly lower than controls. Honey bees exposed to solutions of [As+Pb] had 

similar acquisition scores to Med [As] (GLMM: 0.299±0.234, p=0.201), but honey bees 

exposed to [As+Cu] performed better (GLMM: 0.596±0.241, p=0.013). Honey bees exposed 

to High [As] and [As+Cu+Pb] exhibited similar acquisition scores (GLMM: p=0.810). We 

found no difference in the acquisition scores and the proportions of learners between honey 

bees treated with a single metal and mixed treatments (GLMM: p>0.05), that would have 

indicated non-additive effects (i.e. antagonistic or synergistic). Thus, exposure to metals 

significantly reduced learning performance, and combined exposure appeared to exert simple 

additive deleterious effects.  

 

 

Jo
ur

na
l o

f E
xp

er
im

en
ta

l B
io

lo
gy

 •
 A

cc
ep

te
d 

m
an

us
cr

ip
t



 

Individual and joint exposures to metals reduced long-term memory specificity  

To examine possible effects of metal exposure on memory retention, we tested memory 24 h 

past training. Only honey bees that had learned the CS-US association at the end of 

conditioning were tested. 167 out of the 379 honey bees submitted to the absolute learning 

task did not learn and were therefore not included in the memory test.  

We found no effect of treatment on survival at 24 h (GLMM: p>0.05). However, long-term 

memory was significantly affected (Fig. 2). Overall, treated honey bees responded less to the 

learned odorant (CS) than controls, as indicated by a significant effect of exposure to metals 

on retention levels (GLMM: p<0.05) (Fig. 2A). Yet, this decrease was not significant for 

honey bees exposed to Med [As] (GLMM: -0.260±0.628, p=0.679) and High [As] (GLMM: -

1.023±0.570, p=0.073). Finally, there was no clear dose effect on responses to the CS among 

treated groups (GLMM: -0.576±0.579, p=0.320).  

Individual response patterns (Fig. 2B) revealed a loss of memory specificity. While 

honey bees from all treatments responded similarly to the similar odour (GLMM: p>0.05), 

those exposed to higher doses responded more frequently to all odorants, indicating a higher 

degree of response generalization (GLMM: 1.954±0.775, p=0.012). This was accompanied by 

a significantly lower proportion of specific (CS-only) responses for honey bees exposed to 

[Pb] (GLMM: -1.795±0.690, p=0.009), low [As] (GLMM: -1.313±0.589, p=0.026) and 

[As+Cu+Pb] (GLMM: -1.200±0.588, p=0.041). Exposure also significantly increased the 

frequency of inconsistent responses as compared to controls (GLMM: p<0.05). This was the 

case for each individual treatment except for Med [As], p=0.293). Thus, exposure to metals 

had a negative impact on memory performance at 24h. The analysis of individual response 

patterns also revealed additive effects as they did not differ among groups exposed to 

solutions with the same molarity, nor between single and mixed metal treatments (GLMM: 

p>0.05). Thus, most treatments reduced memory performance at 24h. 

 

The additive effects of metal mixtures may be explained by common pathways of toxicity 

Although many mechanisms of metal toxicity have not yet been elucidated, some points of 

consensus are emerging from the literature. Firstly, interactions between metals can occur in 

the environment of the organism (Grobelak and Kowalska, 2020; Noyes and Lema, 2015), 

and during uptake into the organism, leading to potentially toxic processes of speciation, 

absorption, binding, transport and distribution (Wu et al., 2016). Once metals enter an 

organism, they can induce, alter or inhibit a range of biological responses and metabolic 
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pathways. For example, by mimicking other essential metals (Bridges and Zalups, 2005) or 

damaging the permeability of biological membranes (Rothshein, 1959), metals enable the 

uptake or loss of other compounds from intracellular compartments (Viarengo, 1994). Metals 

are also known to disrupt signalling and calcium homeostasis (particularly important in 

neurons) by interfering with calcium channels (Bridges and Zalups, 2005; Chavez-Crooker et 

al., 2001; Tamano and Takeda, 2011). This might lead to dysfunction and cytotoxicity due to 

the disruption of cell signalling and calcium homeostasis. Genotoxicity (Doğanlar et al., 

2014) may be achieved through covalent binding to DNA (Brocato and Costa, 2013; Senut et 

al., 2014). Eventually, oxidative stress and lipid peroxidation of the cell membrane may lead 

to neuronal death. Additionally, metals in mixtures could interact at target sites, but the effect 

on toxicity of that interaction is largely unknown (Svendsen et al., 2011). Metal mixtures 

could change the bioavailability (Gong et al., 2020), toxicokinetics and toxicodynamics (Gao 

et al., 2016) of each metal, that could impact the toxicity for the organism (Løkke et al., 

2013). Based on these shared mechanisms of toxicity that include oxidative stress (Nikolić et 

al., 2016; Zaman et al., 1995), apoptosis (Raes et al., 2000) and interference with 

neurotransmitters (Nisbet et al., 2018), the toxic effects of metal pollutants in mixtures is 

expected to be additive (von Stackelberg et al., 2013). Of note, these conclusions emerge from 

studies mostly conducted on vertebrates, thus possibly leaving aside specificities of meta 

actions in invertebrate organisms.   

Metal mixtures may affect many aspects of neural activity and brain function in honey 

bees, as in other species (Karri et al., 2016). Here, we focused on learning and memory of 

olfactory cues because they play crucial roles in the behavioural ecology of honey bees and 

other pollinators, for the identification of food resources. Our results in controlled laboratory 

conditions suggest that exposure to sublethal combinations of toxic elements in the field 

might alter individual foraging efficiency, and in turn jeopardize survival of pollinator 

populations. While we could not identify interactive effects in such conditions, this will need 

to be confirmed in field experiments where exposure conditions will differ and affect a 

broader range of behavioural responses (flight activity, navigation). Our approach means to 

fill a gap in the evaluation of joint actions of metals (Meyer et al., 2015), which appears 

necessary to better assess the risks they represent (Nys et al., 2018; Otitoloju, 2003) and better 

inform regulatory frameworks (European Commission, 2012). Current risk assessment 

guidance mainly assesses the effect of individual exposure, which fails to capture potential 

interactive effects. This is of particular importance for honey bees and many other species, 

where contaminated food is transferred and shared among individuals. Hence, the evaluation 
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of metal mixture impacts and their modes of action needs to be developed (Sasso et al., 2010). 

Besides, interactions between toxic metals and environmental factors (Naqash et al., 2020) as 

well as with other chemicals (EFSA Scientific Committee et al., 2019) (e.g. pesticides 

(Sgolastra et al., 2018; Singh et al., 2017), volatile organic compounds (Sasso et al., 2010) 

etc.) should be implemented in an integrated research framework. 

 

Conclusion 

In summary, we demonstrated that arsenic, lead, copper or combinations of these metals, at 

levels found in the environment, slow down appetitive learning and reduce long-term memory 

specificity in honey bees. These metals show simple additive effects as we found no 

differences between different solutions of the same molarity suggesting possible non-linear 

effects (synergism or antagonism). Thus, regarding effects on learning and memory, 

concentration seems to be more important than identity of any specific metal. Since learning 

and memory of olfactory cues play crucial roles in the behavioural ecology of honey bees, 

acute exposure to metal pollutants mixtures could impair fundamental hive function and 

population growth.  
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Figure 1: Learning. A) Learning curves show changes in the percentages of honey bees 

displaying the conditioned proboscis extension response (PER) over five training trials. 

Asterisks indicate significant differences in response rates at the last trial compared to control 

honey bees. B) Violin plots of acquisition score values (sum of conditioned responses for 

each honey bee). Symbols (circle: single exposure; triangle: binary mixture; diamond: tertiary 

mixture) indicate the mean score for each treatment. Significant differences between groups 

exposed to the same molarity solutions (#) or with respect to control honey bees (*) are 

indicated (#/*p<0.05, **p<0.01; GLMM). 
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Figure 2: Long-term memory. A) Percentages of responses to the CS odour in the 24 h-

memory retention test (mean  s.e.m). B) Distribution of honey bees according to their 

individual response pattern during the long-term memory test: response to CS only; response 

to CS and similar; response to all odours; no or inconsistent response. Significant differences 

with controls are indicated (*p<0.05, **p<0.01; GLMM). 

 

 

 

Table 1: Concentrations used. Combined treatments are shown in grey.  

Treatment Molarity (µM) Concentration (mg.L
-1

) Ingestion of 5 µL (ng/bee) 

  As Cu Pb As Cu Pb 

Control 0 0 0 0 0 0 0 

Low [As] 0.13 0.01 0 0 0.05 0 0 

[Cu] 0.27 0 0.02 0 0 0.09 0 

[Pb ] 0.27 0 0 0.06 0 0 0.28 

Med [As] 0.40 0.03 0 0 0.15 0 0 

[As+Cu] 0.40 0.01 0.02 0 0.05 0.09 0 

[As+Pb] 0.40 0.01 0 0.06 0.05 0 0.28 

High [As] 0.67 0.05 0 0 0.25 0 0 

[As+Cu+Pb] 0.67 0.01 0.02 0.06 0.05 0.09 0.28 
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Table S1: Concentrations of As, Cu and Pb reported in water, honey and honey bee 

worldwide. Mean (minimal-maximal) values are reported. NA: not available.  

Matrix Location As Cu Pb Concentration 

Water 

(mg.L-1) 

Former 

mining area, 

France 

0.02 (0.002-0.11) 

2.56 (0.03-7.6) 

0.003 (0.0005-0.006) 

NA 

0.28 (0.0003-0.0009) 

NA 

(Khaska et al., 

2018) 

(Guerin et al., 2000) 

Mining area, 

Turkey 

0.10 0.07 0.01 (Sasmaz et al., 

2015) 

Honey 

(mg.L-1) 

Croatia 0.03 (0.01-0.15) 1.53 (0.05-58.81) 0.09 (0.01-1.20) (Bilandžić et al., 

2011) 

Hungary 0.03 0.29 0.07 (Ajtony et al., 2007) 

Italy 0.01 (0.004-0.029) 1.29 (0.25-8.41) 0.11 (0.04-0.43) (Pisani et al., 2008) 

Post-mining 

area, Italy 

NA NA 0.06 (0.01-0.21) (Satta et al., 2012) 

Industrial 

area, Serbia 

0.05 (0.03-0.08) NA NA (Krunić et al., 1989) 

Turkey NA 0.02 (0.01-0.05) 0.02 (0.01-0.09) (Silici et al., 2008) 

Worldwide 0.07 (0-0.14) 2.84 (0.07-24.65) 0.61 (0.001-4.61) (Solayman et al., 

2016) 

Honey bee 

(mg.kg-1

d.w) 

Urban area, 

Italy 

0.027 (0.07-0.34) 12.82 (7.44-27.09) 0.113 (0.02-0.39) (Giglio et al., 2017) 

Industrial 

site, Italy 

1.95 (1.51-2.68) 5.42 (3.22-7.77) 0.16 (0.06-0.28) (Salvaggio et al., 

2017) 

The 

Netherlands 

0.714 (0.67-0.83) 15.21 (11.65-19.77)  0.571 (0.19-1.67) (van der Steen et al., 

2012) 
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