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Summary 

Non-migrating butterflies keep directed courses when viewing a simulated sun or panoramic 

scene. This suggests that they orient based on multiple visual cues independent of their 

migratory context. 
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Abstract 

Monarch butterflies (Danaus plexippus) are prominent for their annual long-distance migration 

from North America to their overwintering area in Central Mexico. To find their way on this 

long journey, they use a sun compass as their main orientation reference but will also adjust 

their migratory direction with respect to mountain ranges. This indicates that the migratory 

butterflies also attend to the panorama to guide their travels. While the compass has been studied 

in detail in migrating butterflies, little is known about the orientation abilities of non-migrating 

butterflies. Here we studied if non-migrating butterflies - that stay in a more restricted area to 

feed and breed - also use a similar compass system to guide their flights. Performing behavioral 

experiments on tethered flying butterflies in an indoor LED flight simulator, we found that the 

monarchs fly along straight tracks with respect to a simulated sun. When a panoramic skyline 

was presented as the only orientation cue, the butterflies maintained their flight direction only 

during short sequences suggesting that they potentially use it for flight stabilization. We further 

found that when we presented the two cues together, the butterflies incorporate both cues in 

their compass. Taken together, we here show that non-migrating monarch butterflies can 

combine multiple visual cues for robust orientation, an ability that may also aid them during 

their migration.  

 

 

 

 

  

Jo
ur

na
l o

f E
xp

er
im

en
ta

l B
io

lo
gy

 •
 A

cc
ep

te
d 

m
an

us
cr

ip
t



Introduction 

Despite their tiny brains, insects exhibit incredible orientation behaviors that range from simple 

compass orientation (Byrne et al., 2003; el Jundi et al., 2019), to more complex behaviors such 

as path integration (Collett and Collett, 2000; Heinze et al., 2018) or long-distance migration 

(Dreyer et al., 2018b; Merlin and Liedvogel, 2019; Warrant et al., 2016). One prominent model 

organism for the study of spatial orientation in the context of migration is the monarch butterfly 

(Danaus plexippus) (Reppert and de Roode, 2018; Reppert et al., 2016). These colorful 

butterflies migrate every year over more than 4,000 km from North America and Canada to 

their overwintering habitat in Central Mexico. To find their route, they rely on celestial compass 

cues, such as the sun and polarized light (Mouritsen and Frost, 2002; Froy et al., 2003; Reppert 

et al., 2004; Reppert, 2006; Heinze and Reppert, 2011), and the Earth’s magnetic field (Guerra 

et al., 2014), with the sun being their main orientation reference during migration (Stalleicken 

et al., 2005). In order to do this, they compensate their sun compass based on time-of-day 

information from circadian clocks in the brain (Sauman et al., 2005) and/or the antennae (Merlin 

et al., 2009; Merlin et al., 2011; Guerra et al., 2012) to keep a constant southerly migratory 

direction over the entire course of a day (Mouritsen and Frost, 2002; Froy et al., 2003). Besides 

these cues, observations of heading directions in freely migrating butterflies indicate that they 

additionally rely on terrestrial cues and adjust their migratory direction from south south-west 

to south south-east as soon as they reach the mountains of the Sierra Madre Oriental (Calvert, 

2001). While it is still unclear whether the monarch butterflies use terrestrial cues in 

combination with skylight cues, it is known that migrating Bogong moths constantly integrate 

visual landmarks with the Earth’s magnetic field to maintain a directed course (Dreyer et al., 

2018a).  

To obtain a robust orientation compass, it is well established that many insects use a 

combination of visual cues from their environment. Ants combine skylight (Lebhardt and 

Ronacher, 2015; Wehner, 1997) and terrestrial cues, such as the panoramic skyline (Judd and 
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Collett, 1998; Collett and Collett, 2002; Durier et al., 2003; Graham and Cheng, 2009a), to 

define the desired homeward direction. Integration of multiple visual cues is a common strategy 

in insects, allowing them to keep track of their heading direction irrespective of their behavioral 

state. Neurobiological studies in flying fruit flies showed that the insect’s internal compass 

encodes the entire visual scene in a highly flexible manner (Fisher et al., 2019; Kim et al., 2019). 

This highly dynamic coding of visual cues allows an insect to constantly integrate multiple cues, 

such as a panoramic scenery, in its compass and to set it in relation to the sun’s position. A very 

similar internal compass network not only steers migration to Mexico in monarch butterflies 

(Heinze and Reppert, 2011; Heinze et al., 2013) but also likely guides animals through their 

environment in their non-migrating phase. 

This study is a first step in investigating how non-migrating monarch butterflies use 

single visual cues (simulated sun and panoramic skyline) and a combination of these cues for 

orientation. We presented the cues to the butterflies while the animals were tethered at the center 

of an LED flight simulator. Although these butterflies were not in their migratory state, we 

found that the butterflies were able to keep a constant heading direction for the entire flight 

sequence with respect to a simulated sun. When we presented a panoramic skyline to the 

butterflies, they were also able to keep constant headings with respect to this stimulus, but only 

did so for short flight periods. Thus, most butterflies seem to use the panoramic skyline for 

flight stabilization. When the simulated sun and the panoramic skyline were presented together, 

we found that the butterflies used both cues for orientation. Their directedness dropped if they 

had only one cue for orientation. Our results show that, irrespective of their migratory or internal 

state, monarch butterflies can maintain a directed heading based on a simulated sun and 

terrestrial cues. These findings will allow us to investigate the behavioral and neural 

mechanisms of how these animals maintain a directed course not only in migrating but also in 

non-migrating butterflies. 
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Material and Methods 

Experimental animals 

Monarch butterfly (Danaus plexippus) pupae were obtained from the butterfly supplier Costa 

Rica Entomology Supply (butterflyfarm.co.cr). The pupae were reared in an incubator (HPP 

110 and HPP 749, Memmert GmbH + Co. KG, Schwabach, Germany) at 25°C and 80% relative 

humidity under a 12:12 hour light/dark cycle. After eclosion, the adult butterflies were kept 

inside a flight cage in an incubator (I-30VL, Percival Scientific, Perry, IA, USA) at a 12:12 

hour light/dark cycle. The incubator was set to 25°C in the light and 23°C in the dark phase and 

to a constant relative humidity of 50%. The butterflies had free access to a feeder containing 

15% sucrose solution. In our experiment, we used adult butterflies of both sexes 3-12 days after 

eclosion. For all experiments, we tested a new group of butterflies. 

Prior to the experiments, each butterfly’s thorax was cleared of scales and a tungsten 

stalk (0.508 x 152.4 mm, Science Products GmbH, Hofheim, Germany) was attached to the 

thorax dorsally using an instant adhesive glue (multi-purpose impact instant contact adhesive, 

EVO-STIK, Bostik Ltd, Common Road, Stafford, ST16 3EH, UK). Before the butterflies were 

tethered in the flight simulator, they were kept in a clear plastic container with access to 15% 

sucrose solution for at least three hours in darkness to allow the glue to harden.  

 

Flight simulator 

All experiments were performed indoors in an LED flight simulator (Fig. 1A). Similar to 

previous studies (Mouritsen and Frost, 2002; Dreyer et al., 2018a; Dreyer et al., 2018b), the 

heading directions of individual butterflies were recorded by connecting the tungsten wire to an 

optical encoder (E4T miniature Optical Kit Encoder, US Digital, Vancouver, WA, USA) at the 

center of the flight simulator. Body orientations were recorded with a temporal resolution of 

200 ms, an angular resolution of 3° and sent via a digitizer (USB4 Encoder Data Acquisition 

USB Device, US Digital, Vancouver, WA, USA) to a computer with the corresponding software 
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(USB1, USB4: US Digital, Vancouver, WA, USA). To present different visual stimuli to the 

butterflies, the inner surface of the arena was equipped with an array of 2048 RGB LEDs (16*16 

APA102C LED Matrix, iPixel LED Light Co.,Ltd, Baoan Shenzhen, China). The color and 

intensity of all LEDs was controlled by a raspberry pi (Raspberry Pi 3 Model B, Raspberry Pi 

Foundation, UK) and a custom written python script.   

 

The sun compass in butterflies 

To simulate the sun, one LED, at an elevation between 5-10°, was set to green light (emission 

peak at approximately 516 nm; intensity of ~5.2 x 1012 photons/cm2/s, measured at the center 

of the arena) while the remaining LEDs of the arena were set to blue light (emission peak at 

about 458 nm; intensity of ~4.61 x 1010 photons/cm2/s/LED, measured at the center of the arena; 

experiment: green sun). Individual butterflies were tethered at the center of the arena and their 

headings were recorded for eight minutes (Fig. 2B). The position of the stimulus was switched 

by 180° every two minutes, to ensure that the animals relied on the stimulus presented for 

orientation. The start position of the sun stimulus was pseudorandomized. Thus, half of the 

butterflies experienced the sun stimulus at 0° first (0°/180°/0°/180°), while for the other half of 

the butterflies the sun stimulus was set at 180° first (180°/0°/180°/0°).   

To understand which features, the spectral or intensity information, of the sun stimulus 

butterflies used, we performed an additional experiment [again over eight minutes (Fig. 2D)] in 

which we excluded the spectral information from the sun stimulus. Thus, the animals’ behavior 

was tested by performing the same experiment as with the green sun but with a blue LED that 

had the same spectrum as the remaining blue LEDs of the arena but was much brighter (~5.2 x 

1012 photons/cm2/s, measured at the center of the arena; experiment: blue sun).  

To exclude the possibility that butterflies used any additional cues in the experimental 

setup or room, a negative control experiment was performed for eight minutes with all LEDs 

set to the same blue wavelength and intensity (experiment: no cue; Fig. 2C). 
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The use of a panoramic skyline 

To investigate how butterflies orient with respect to a global, terrestrial cue, we presented the 

animals with a panoramic skyline with a variable height profile (Fig. 3). While the background 

above the horizon was set to blue light (emission peak at 458 nm and an intensity of ~4.61 x 

1010 photons/cm2/s/LED; panorama), the LEDs in the lower part were turned off. The 

butterflies’ headings were recorded for eight minutes while the position of the stimulus switched 

by 180° every two minutes. In a control experiment, the profile of the panorama was removed 

by switching off LEDs below an elevation of ~0°, which resulted in a flat horizon (flat 

panorama). To gain a deeper understanding of how the butterflies used the presented simulated 

panoramic skyline, compass orientation vs. flight stabilization, we performed an experiment 

with a stationary grating of vertical stripes in blue (emission peak at approximately 458 nm; 

three columns of LEDs per stripe, spatial frequency of ~0.044 cycles/degree; experiment: 

grating) and black. Each blue LED had an intensity of ~4.61 x 1010 photons/cm2/s. The flight 

performance of the butterflies was recorded for four minutes.  

 

Combination of terrestrial and sun compass information 

To answer the question of whether monarch butterflies combine different visual cues to increase 

their flight accuracy, we presented the panoramic skyline together with the bright green sun 

stimulus (experiment: panorama and sun, Fig. 4). Each butterfly’s orientation performance was 

recorded for eight minutes and the position of the panorama and sun was switched by 180° 

every two minutes. In a control experiment where the profile of the panorama lacked any bumps 

(i.e. was a flat horizon), the panoramic features were excluded but the sun was available 

(experiment: sun and flat panorama).  

In an additional experiment, we investigated how the disappearance of a visual cue 

affects the butterflies’ orientation performance (Fig. 5). We first allowed the butterflies to 
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acclimate to the experimental conditions for two minutes (with the green sun and panorama 

available) as we noticed in the sun and panorama experiments (Figs. 2E, 3C) that the orientation 

abilities of butterflies significantly changed over the first two minutes. In the subsequent 

30 seconds, the butterflies were again presented with the combination of the panoramic skyline 

with variable heights and the green sun stimulus (combination). For the next 30 seconds, we 

excluded one of the stimuli [we either removed the sun stimulus or removed the peaks of the 

profile of the panorama (single cue)]. Half of the animals were first tested without a panorama 

(but with the sun), while half of the butterflies first experienced the panorama (without the sun). 

All butterflies experienced both stimuli again for an additional 30 seconds (combination) before 

the other stimulus that was present in phase 2 (either the simulated sun or the panorama) was 

removed (single cue) for further 30 seconds. The order of the stimulus presentation (both cues/ 

simulated sun, both cues/ panorama) was pseudorandomized. 

 

Data analysis 

All data were analyzed in the software MATLAB (Version R2017b, MathWorks, Natick, MA, 

USA) using the CircStat toolbox (Berens, 2009). The experiments that took eight minutes 

(green sun, blue sun, no cue, panorama, flat panorama, panorama and sun, sun and flat 

panorama; Figs. 2-4) were divided into four phases of equal length, and all butterflies that 

stopped more than four times during the experiments were excluded from the analysis. The 

grating experiment (Fig. 3) was split into two phases (two minutes each). Because this 

experiment lasted for only four minutes, butterflies that stopped flying more than two times 

were excluded from the analysis. This exclusion criterion was also used for the combination 

experiment (Fig. 5). Depending on the experiment, the data were divided into either two-minute 

(Figs. 2-4) or 30 second (Fig. 5) phases. 

To present the data with respect to the stimulus position, all heading directions were 

shifted in such a way that the simulated sun or a specific point of the panorama stimulus was 
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positioned at 0°. For each butterfly we calculated the flight trajectory (e.g. in Fig. 1B), and the 

mean vector within each ten-second bin and within a phase (two-minute bins) (Figs. 2-4). The 

mean direction µ of each butterfly within a phase was calculated (Fig. 1B). In the combination 

experiment each phase lasted for 30 seconds instead of 2 minutes. To obtain the animal’s 

performance on a finer scale in the combination experiment (Fig. 5), we calculated the vector 

length r within a window size of one second. This allowed us to register the effect of the 

disappearance of one cue on the animal’s orientation ability within a very short time period. To 

avoid any misinterpretation of these r values (they are higher than the r values over 10 sec. or 

2 min.), we normalized all r values to the highest r value obtained in each flight. To further 

analyze the butterflies’ performance in our flight simulators, we calculated the angular speeds 

of the butterflies. A highly oriented animal shows low angular speeds, usually caused by slow 

swinging around the heading direction. Highly disoriented animals exhibit high angular speeds, 

often caused by rapid rotation. The angular speed of individual butterflies was defined by 

calculating the absolute angular difference between two consecutive headings (Figs. 3, 5). To 

further test whether the butterflies followed a relocation of a stimulus, their change of heading 

was calculated by measuring the angular differences in the mean direction between two 

consecutive phases (Figs. 2F, 3D, 3E). As each individual experienced three stimulus 

relocations over the 8-minutes flight (after 2, 4, and 6 minutes), we calculated the mean change 

of heading over three stimulus-relocations in each animal. 

 

Statistics 

During our experiments, we noticed that many butterflies exhibited very poor performance in 

the first two minutes as compared with the remaining six minutes (e.g. green sun and blue sun, 

Fig. 2E). The time course of a butterfly’s ability to keep a constant heading varied somewhat 

between experiments within the first phases compared to the following phases. To ensure that 

we compare the butterflies at a phase when they had adjusted to the experimental situation, we 
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focused on the last phase of each experiment for the statistical evaluation. A possible bias of 

the heading directions towards a certain direction within this phase was tested with the non-

parametric Moore's Modified Rayleigh test (Moore, 1980). Furthermore, some butterflies 

performed poorly and failed to follow the change of the stimulus position. To compare the 

performance of the butterflies, we therefore calculated the mean r within the last two-minute 

phase of the control experiments plus the 95% confidence interval (no cue: r = 0.1169, flat 

panorama: r = 0.1194). We used a Chi-square test to compare the proportion of butterflies 

above these thresholds. All animals that showed a lower directedness than these r values were 

excluded from the comparison. The performance of the butterflies was statistically compared 

using a Kruskal-Wallis-Test for samples of different groups or using the Wilcoxon signed-rank 

test for comparison within the same group of butterflies (e.g. Fig. 5). The Mardia-Watson-

Wheeler test was used to compare the heading directions of different butterfly groups.  

 

Results 

The sun compass in butterflies 

To study the orientation of monarch butterflies with respect to a simulated sun, we recorded the 

flight performance while the animals were tethered at the center of the LED flight simulator 

(Fig. 1A) and were presented with a green, bright light spot against a blue background as their 

only orientation reference. Many monarch butterflies, even though they were outside of their 

migratory phase, kept a constant heading direction with respect to this stimulus. When the 

stimulus’s position was turned by 180°, these butterflies changed their heading accordingly 

(Fig. 2A, green trajectory). On average, the butterflies chose headings towards the simulated 

sun (p = 0.002, R = 1.46; µ = 9° with respect to the simulated sun; non-parametric Moore's 

Modified Rayleigh test; green sun; N = 24; Fig. 2B). Next, we switched the green stimulus LED 

to blue, so it was indistinguishable from all other LEDs in the arena. Unsurprisingly, the r 

values, which describe the orientation precision of each butterfly across the two-minute phase, 
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were significantly lower in the absence of the simulated sun (no cue; Fig. 2C) than when the 

sun stimulus was available (p = 0.001, χ2 = 10.59, Ngreen sun = 24, Nno cue = 22; Kruskal-Wallis-

Test). This was also evident when we analyzed the flight directedness on a much finer temporal 

scale (Fig. 2E): the vector length r/10 s increased from on average 0.30 ± 0.16 (mean ± SD) 

over the first two minutes when the animals viewed the simulated sun and remained stable at a 

vector length of about 0.39 ± 0.20 for the subsequent six minutes of flight (green sun; Fig. 2E). 

In contrast, the vector length remained relatively low (at 0.20 ± 0.10) throughout the entire 

eight-minute flight in the absence of any cue (no cue; Fig. 2E). Taken together, the improvement 

of orientation in the presence of a directional stimulus and the following of the stimulus show 

that non-migrating butterflies use the sun stimulus in our flight simulator for orientation.  

To investigate whether the butterflies relied on the spectral or the brightness component 

of the sun stimulus for orientation, we presented the simulated sun as a bright, blue spot. Similar 

to what we observed with the green sun, butterflies were able to keep a directed course with 

respect to the blue sun and changed their heading when the stimulus was displaced by 180° 

(Fig. 2A, blue trajectory). The heading directions of the butterflies in the blue sun experiment 

were uniformly distributed across possible compass directions (p = 0.22, R = 0.71; non-

parametric Moore's Modified Rayleigh test; blue sun; N = 24; Fig. 2D), showing no bias to any 

specific direction. The vector length r/10 s over the entire flight sequence exhibited a similar 

time course for the experiments with the green sun and blue sun (Fig. 2E). Although many 

butterflies kept a constant course in both experiments, we noticed that only a subpopulation of 

animals followed the 180° relocation of the stimulus [14 out of 24 (green sun) and 15 out of 24 

(blue sun) showed a change in heading > 90°; Fig. 2F]. The remaining butterflies did not change 

their heading as expected if they used the presented cues for orientation. To exclude any 

potential effects due to differences in the butterflies’ behavioral state, we analyzed how many 

animals exhibited a higher r value under conditions with a cue (green sun and blue sun) 

compared to the mean [plus 95% confidence interval (CI)] r values when no visual cue (no cue) 
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was available. 18 out of 24 butterflies (75%) presented with the green sun stimulus showed a 

higher mean vector length r than when the cue was absent (r > 0.1169), while only 14 out of 24 

animals (58%) showed a higher vector length in the blue sun experiment (Fig. 2G). These 

proportions of “oriented” animals were not significantly different (p = 0.36, χ2 = 0.84, Ngreen sun 

= 24, Nblue sun = 24; Chi-square test; Fig. 2G). The vector length r of these “oriented” animals 

was similar in the green sun and blue sun experiment (p = 0.43, χ2 = 0.64, Ngreen sun = 18, Nblue 

sun = 14; Kruskal-Wallis-Test; Fig. 2H) and no significant differences in the heading directions 

between both groups were found (p = 0.06, W = 5.64, Ngreen sun = 18, Nblue sun = 14; Mardia-

Watson-Wheeler test). This suggests that a sun stimulus that contains only brightness 

information elicits a similar ability to keep a constant heading as a stimulus that contains both 

spectral and brightness information. 

 

The use of a panoramic skyline 

Next, we presented a panoramic skyline to the animals with the panorama’s profile consisting 

of smaller and higher bumps (Fig. 3A). The animals kept arbitrary headings with respect to the 

variable height panorama stimulus (p = 0.37, R = 0.58; non-parametric Moore's Modified 

Rayleigh test; panorama, N = 25; Fig. 3A). When the panorama was flat, i.e. the peaks of the 

panorama’s profile were absent, we observed that none of the tested animals kept a constant 

heading (flat panorama, N = 18; Fig. 3B). Although the length of mean vector r was similar 

when the panorama’s profile exhibited variable heights (Fig. 3A) compared to when the 

panorama was flat (p = 0.12, χ2 = 2.41, Npanorama = 25, Nflat panorama = 18; Kruskal-Wallis-Test; 

Fig. 3B), the vector lengths r/10 s over the entire experiment were significantly longer with the 

panorama with variable heights as compass cue (p < 0.001, χ2 = 13.53, Npanorama = 25, Nflat 

panorama = 18; Kruskal-Wallis-Test; Fig. 3C). This suggests that the panoramic skyline stimulus 

improves the butterfly’s ability to maintain a directed course.  
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We also noticed that the butterflies did not change their headings when the visual scene 

was turned by 180° (Figs. 3D, 3E). In general, they did not keep a certain heading direction 

with respect to the panorama stimulus (as in the sun experiments) but rather constantly changed 

their headings over the course of the experiment (Fig. 3F). This opens up the possibility that the 

panorama might not be used for compass orientation but for flight stabilization. This is further 

supported by the observation that the rotational speed of the animals, i.e. their angular speed, 

was significantly lower when the panoramic features were available to the animals then when 

the panorama was flat (p < 0.0001, χ2 = 2633.71, Npanorama = 25, Nflat panorama = 18; Kruskal-

Wallis-Test; Fig. 3G). To next study the butterflies’ performance with respect to a visual 

stimulus that provides a strong rotational optic flow but lacks any directional information, we 

conducted an additional experiment in which we presented a stationary grating pattern to the 

butterflies (grating; N = 21; Fig. 3H). Interestingly, the butterflies showed angular speeds up to 

about 540°/s in both panorama experiments (panorama and flat panorama). In contrast, the 

animals’ angular speeds did not exceed 180°/s in the grating experiment (Fig. 3I). This 

demonstrates that optic-flow information is perceived by the monarch butterflies in this setup 

and plays an important role while the animals aim to keep a constant flight direction.   

To compare the butterflies’ orientation performance between the panorama and grating 

experiment, we first analyzed how many animals exhibited a higher r value in these experiments 

than in the flat panorama (mean r + 95% CI) experiment. 9 out of 25 animals (36%) showed a 

higher r value in the experiment with the panorama, 12 out of 21 (57%) were higher in the 

grating experiment (Fig. 3J). The proportion of “oriented” butterflies was the same in both 

experiments (p = 0.26, χ2 = 1.30, Npanorama = 25, Ngrating = 21; Chi-square test; Fig. 3J). The mean 

vector length r of the “oriented” animals did not differ between both experiments (p = 0.48, χ2 

= 0.51, Npanorama = 9, Ngrating = 12; Kruskal-Wallis-Test; Fig. 3K). Nevertheless, we noticed that 

two butterflies exhibited a very high directedness with the variable height panorama (r > 0.4; 

Figs. 3A, K) which was never observed in the grating pattern experiments (Figs. 3H, K).    
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Combination of terrestrial and sun compass information 

To characterize orientation performance in the presence of both terrestrial and celestial cues, 

we presented the green sun combined with the panoramic skyline including a profile with 

variable heights (panorama and sun; N = 24; Fig. 4A) or with a flat profile (sun and flat 

panorama; N = 25; Fig. 4B). When the panoramic skyline with variable heights was added to 

the scenery (panorama and sun) most of the animals kept a specific heading with a mean vector 

clockwise to the simulated sun (p < 0.001, R = 1.63, N = 24; µ = 29° with respect to the 

simulated sun; non-parametric Moore's Modified Rayleigh test; Fig. 4A). In contrast, the 

butterflies chose arbitrary headings in the sun and flat panorama experiment (p = 0.34, R = 

0.60, N = 25; non-parametric Moore's Modified Rayleigh test; Fig. 4B). This effect was also 

observed in the experiment without the green sun (panorama; Figs. 3A, 4C). The vector length 

r/10 s was stable over the entire flight when both, the sun and panorama, were available [0.38 

± 0.20 (mean ± SD); panorama and sun; Fig. 3D] and was significantly higher compared to the 

condition without the sun [0.30 ± 0.19 (mean ± SD) panorama] (p = 0.005, χ2 = 8.07, Npanorama 

= 25, Npanorama and sun = 24; Kruskal-Wallis-Test; Fig. 4D). However, the directedness did not 

differ between the panorama and sun and when the panorama’s profile was flat [0.35± 0.20 

(mean ± SD); sun and flat panorama] (p = 0.33, χ2 = 0.94, Npanorama and sun = 24, Nsun and flat panorama 

= 25; Kruskal-Wallis-Test; Fig. 4D]. To compare the performance of the butterflies, we 

calculated how many animals exhibited a higher directedness r value in the sun and flat 

panorama and panorama and sun experiment compared to the mean r value + 95% CI (r = 

0.1194) in the flat panorama experiments (Fig. 3B). Irrespective of the panorama, more animals 

showed higher r values as soon as the simulated sun was available (p = 0.002, χ2 = 9.48, Npanorama 

= 25, Npanorama and sun = 24; Chi-square test; p = 0.048, χ2 = 3.92, Npanorama = 25, Nsun and flat panorama 

= 25; Chi-square test; Fig. 4E). The performance of these “oriented” animals did not show any 

significant differences (p = 0.61; χ2 = 0.99, Npanorama = 9, Npanorama and sun = 20, Nsun and flat panorama 
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= 17; Kruskal-Wallis-Test; Fig. 4F) which suggests that combining different visual cues does 

not necessarily help to improve the directedness of the butterfly’s flight behavior.  

The previous experiment did not allow us to test whether the butterflies registered both 

visual cues in their compass or if they relied on the simulated sun as their only reference (while 

ignoring the panoramic skyline). We therefore performed an experiment in which we presented 

both cues (green sun and panorama; combination; Fig. 5A) to the butterflies in a first phase and 

subsequently withheld one of the cues (single cue; Fig. 5A) during a second phase (followed by 

an additional phase with both cues – combination – and a subsequent disappearance of the other 

cue – single cue – see Fig. 5A). 18 of 25 butterflies showed a performance with higher r values 

in the two combination phases than in the flat panorama (Fig. 3C) experiment. When analyzing 

the switch from the two visual stimuli to one cue in these 18 animals, we found that irrespective 

of which cue we turned off, this led to a significant decrease in the directedness r of the 

butterflies (p < 0.001, Z = 4.33, N = 18 when the peaks of the panorama’s profile disappeared; 

Wilcoxon signed-rank test; Fig. 5B upper panel; p < 0.001, Z = 3.71, N = 18 when the simulated 

sun disappeared; Wilcoxon signed-rank test; Fig. 5B lower panel). Associated with this drop in 

the vector length, the angular speed increased when only one cue was available (p < 0.001, Z = 

-9.40, N = 18 when the peaks of the panorama’s profile disappeared; Wilcoxon signed-rank 

test; p < 0.001, Z = -7.90, N = 18 when the simulated sun disappeared; Wilcoxon signed-rank 

test; Fig. 5C) further confirming that both cues are being registered by the butterflies. 

Interestingly, the disappearance of a specific cue had different effects in different animals. In 

several animals (8 out of 18), we found a drop in the vector length r when one of the cues – the 

simulated sun or the panorama – was excluded from the visual scenery (Fig. 5D, upper and 

middle). In other butterflies (10 out of 18), the disappearance of one of the cues did not have 

any effect on the directedness (Fig. 5D, lower panel) which indicates that they can dynamically 

switch from one to another as main orientation reference. Taken together, the data show that 
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monarch butterflies can register multiple visual cues to keep a directed course. However, the 

relevance of these cues seems to differ in the tested animals.  

 

Discussion 

The sun compass 

Our experiments show that monarch butterflies – even when they are not in their migratory 

phase – use a green light cue (simulated sun) to keep a constant heading. This suggests that sun 

-compass orientation is not restricted to migration in this species. Whether non-migrating 

butterflies also shift their heading direction in a time-dependent manner to the simulated sun, 

as the migratory butterflies doe to the real sun (Mouritsen and Frost, 2002; Froy et al., 2003), 

remains to be investigated.  

Our results show that monarch butterflies sometimes prefer to choose a heading towards 

the simulated green sun (Fig. 1B), while in some experiments they took arbitrary headings (Fig. 

4B). The latter is similar to the findings in the fruit fly Drosophila melanogaster that also 

maintains arbitrary headings (Giraldo et al., 2018) and suggest that they are able to perform 

compass orientation with respect to the sun stimulus. The heading choices towards the green 

sun in Fig. 2B may potentially result from a reduced ability of the butterflies to detect the sun 

stimulus in front of the bright blue background. In previous experiments, the sun was presented 

in front of a dark background (el Jundi et al. 2015b, Giraldo et al. 2018), while in our 

experiments the illuminated background led to a reduced contrast between the sun stimulus and 

the background (the sun stimulus was only 2 orders of magnitude brighter than the background). 

This may result in heading directions where the animals keep the stimulus frontally in their 

visual fields. This is line with the arbitrary heading choices in Fig. 4B where fewer blue LEDs 

were turned on and, thus, a stronger contrast between the sun and blue background was 

presented to the butterflies. It will now be interesting to test what heading choices the non-

migrating butterflies prefer if we study them with respect to the real sun outdoors. But why do 
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the butterflies, even when they are not in their migratory phase, keep constant headings in the 

flight simulator and what is their behavioral state? Our current interpretation is that the 

butterflies exhibit an escape response and use the sun stimulus as a reference as has been shown 

in non-migrating butterflies outdoors previously (Kanz, 1977). An alternative explanation is 

that the butterflies’ goal, on their search for food, is to disperse into a new niche, a behavior 

that is well established for butterflies under natural conditions (Felt, 1925; Stevens et al., 2010).  

Our experiments show that monarch butterflies use a sun stimulus that contains only 

brightness information in a very similar way as a stimulus that contains both spectral and 

brightness information. This suggest that intensity information of the sun can be used by the 

butterflies to keep a directed course, which is in line with electrophysiological studies that 

indicate a wavelength-independent neural coding of the sun in the monarch butterfly’s brain 

(Heinze and Reppert, 2011). In nature, due to a different ratio of shorter (UV light) and longer 

(green light) wavelengths of light between the solar and anti-solar hemisphere, the direction of 

the sun can be determined based on a spectral contrast (Coemans et al., 1994; el Jundi et al., 

2014). Whether monarch butterflies can use this spectral information, similar to what has been 

shown for bees (Brines and Gould, 1979; Edrich et al., 1979; Rossel and Wehner, 1984) and 

dung beetles (el Jundi et al., 2015a; el Jundi et al., 2016) remains to be shown in further 

experiments. In bees, a green light cue is interpreted as the sun while a UV light cue is treated 

as a patch of the sky somewhere in the anti-sun direction (Brines and Gould, 1979; Edrich et 

al., 1979; Rossel and Wehner, 1984). Unfortunately, our current LED stimulus does not allow 

testing for this in monarch butterflies as the stimulus lacks any UV light. This could also explain 

why the butterflies in our control experiments (Fig. 2C & 3B) could not use their inclination 

compass, as it relies on light in the UV to violet range (Guerra et al., 2014). Thus, to fully 

determine whether monarch butterflies use spectral information for orientation, we aim to 

additionally present UV light in our flight simulator in the future. 
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The use of a panoramic skyline 

Monarch butterflies rely on a sun compass (Mouritsen and Frost, 2002; Stalleicken et al., 2005), 

and potentially also use terrestrial cues to keep a desired heading direction in a similar way as 

it has been shown in the past for other insects (Cartwright and Collett, 1983; Collett and Land, 

1975; Fleischmann et al., 2018; Lehrer and Collett, 1994). Ants and wasps are well-known to 

use the panoramic skyline as an orientation reference during homing (Graham and Cheng, 

2009a, 2009b; Philippides et al., 2011; Reid et al., 2011; Narendra et al., 2013; Narendra and 

Ramirez-Esquivel, 2017; Stürzl et al. 2016). Calvert (2001) observed a change in the monarch 

butterfly’s migratory direction as soon as they reached the mountains of the Sierra Madre 

Oriental. The author suggested that the butterflies might use the beneficial wind conditions 

generated by the mountain ranges to migrate toward Mexico (Calvert, 2001). Similarly, it was 

suggested in another study that the Rocky Mountains act as a physical barrier and funnel the 

butterflies towards Mexico (Mouritsen et al., 2013). In these cases, the animal’s compass can 

obtain a higher robustness for the maintenance of the migratory direction by combining and 

matching the sun’s position with the terrestrial scenery. It will therefore be very interesting to 

test if terrestrial cues play a major role in the context of migration.  

Terrestrial cues might especially be relevant if the animals orient in their natural habitat 

in their non-migratory phase, e.g. during foraging. We therefore presented a dark silhouette of 

a panoramic skyline to the butterflies as findings in ants suggest that the contrast of objects 

against the sky is important for the animals’ orientation (Graham and Cheng, 2009a). In our 

experiments, most of the butterflies used the presented panorama to keep a certain heading only 

over a short time period and did not follow a 180° relocation of the stimulus. Apart from 

directional information, a panoramic skyline provides an animal with rotational optic flow 

information which can be used by insects for positional control (Wolf and Heisenberg, 1990). 

Although it is very difficult to unravel how exactly the butterflies interpreted the panorama 

stimulus, our data suggest that they mainly used it for flight control. Nevertheless, some 
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individuals showed well oriented flights when presented with the panorama with high r values 

(Fig. 3A). These were not observed when the animals had optic-flow (but no distinct cue) for 

orientation, which indicates that these animals used the panorama for compass orientation. 

Whether the use of the panorama as a compass cue is dependent on the distinctness of the 

features of the panorama’s profile is currently not known but will be the focus of our research 

in the future. Furthermore, it will be interesting to study if they can store and memorize a desired 

heading with respect to the panoramic scene, a similar matching strategy to the one that has 

been shown in ants (Lent et al., 2010).   

 

Combination of multiple cues 

We presented the green sun stimulus in combination with the panoramic skyline to study how 

the butterflies use a visual scene that mimics a combination of celestial and terrestrial 

information. We found that the presentation of both cues did not lead to a more directed flight 

performance (Fig. 4), as has been shown for the combination of multimodal cues in ants, moths, 

and dung beetles (Dacke et al., 2019; Dreyer et al., 2018a; Huber and Knaden, 2017; Müller 

and Wehner, 2007). The ability of the butterflies to keep a directed heading direction over larger 

time periods was dominated by the presence of the simulated sun, which is in line with 

observations in migrating butterflies. This suggests that the sun is the main orientation cue for 

monarch butterflies (Stalleicken et al., 2005). Nevertheless, we found that in the absence of the 

sun or the panorama the directedness of the butterflies was affected (Fig. 5). Some animals used 

both cues during flight, while other individuals relied predominantly on the simulated sun or 

the panoramic skyline as a reference. This indicates that the butterfly’s compass is capable of 

combining and weighting different visual cues, similar to what has been shown in ants and dung 

beetles (el Jundi et al., 2015b; el Jundi et al., 2016; Huber and Knaden, 2017). This is also 

similar to findings in the migrating Bogong moth which uses different modalities – the Earth’s 

magnetic field and dominant visual cues – for orientation (Dreyer et al., 2018a). When these 
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cues were set in conflict, several moths were disoriented while other individual moths remained 

well oriented. This is in line with our results that reveal a strong interindividual variability in 

the weighting of different orientation cues in lepidopterans and raises the question of what 

mechanism lepidopterans in general, and butterflies specifically, use to combine different cues 

in their compass. One mechanism that butterflies could use is to store multiple cues of a scene 

in a snapshot (with respect to the desired heading direction) and to match it to the current view, 

a strategy that is used by orienting dung beetles (el Jundi et al., 2016; Dacke and el Jundi, 2018). 

Similar to these beetles (el Jundi et al., 2015b), we know that the central complex acts as an 

internal compass for the butterfly’s migration (Heinze and Reppert, 2011; el Jundi et al., 2014). 

Thus, this brain region likely plays a major role in the integration of sun and terrestrial compass 

information as it provides the neuronal substrate that allows a flexible combination of different 

cues in the insect’s compass (Fisher et al., 2019; Kim et al., 2019; Seelig and Jayaraman, 2015). 

The results here show that non-migrating monarch butterflies can keep constant headings with 

respect to a visual scene based on skylight and terrestrial cues, similar to what migrating 

butterflies do during their annual journey. This suggests that the central complex controls 

orientation at any stage of the butterfly’s life, allowing us to study the neural mechanisms of 

the butterfly’s compass in detail, not only during their migration but also while they are in their 

non-migratory phase.  
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Figures 

 

 

Fig. 1. The orientation of tethered monarch butterflies in an LED flight simulator. (A) 

Schematic illustration of a monarch butterfly tethered at the center of the LED flight simulator. 

The inner surface of the arena is equipped with 2048 RGB-LEDs. While presenting visual 

stimuli to the butterflies, their heading directions were monitored using an optical encoder. (B) 

Virtual eight-minute flight tracks of a disoriented (upper, left trajectory) and a well-oriented 

(lower trajectory) butterfly (bin size: 10 s). The red and blue portion of the trajectories indicate 

a two minutes phase. The red and blue vectors in the circular plot (right) indicate the mean 

heading direction and vector length r of the corresponding phases shown in the flight tracks. 

The length of the vectors can vary between zero (disoriented) and one (perfectly oriented). The 

inner dashed circle indicates a vector length of 0.2 and the perimeter of the plot a vector length 

of 1.  
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Fig. 2. The sun compass in monarch butterflies. (A) Flight trajectories of individual 

butterflies that viewed a bright green sun (green), a bright blue sun (blue) or no cue (black) as 

orientation reference. When the sun stimulus was relocated by 180°, the butterflies followed the 

change of the stimulus’s position. Black arrow indicates the position of the sun stimulus or a 

specific point in the control scenery in the beginning of the experiment. (B-D) Orientation of 

butterflies with respect to a green sun (B; N = 24), without any compass cues (C; N = 22) or a 

blue sun (D; N = 24). The mean vector for every butterfly was calculated over a two-minute 
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phase. The inner circle of the plots indicates r = 0.2. The red sector shows the circular standard 

deviation (SD) of the animals’ significant group orientation. (E) The mean vector length r (bin 

size: 10 s) over entire experiments shows that the butterflies were better oriented with respect 

to a sun stimulus (green and blue curves) compared to the control condition without any 

directional information (black curve). Shaded areas indicate the 25-75% quantile. The vertical 

dashed lines indicate the two-minute section that was used to present the heading direction in 

B-D. (F) Histogram of heading changes after a 180° relocation of the stimulus (bin size: 5°) for 

the no cue (upper plot), the green sun (middle plot) and blue sun (lower plot) experiment. (G) 

The number of “oriented” butterflies was calculated by analyzing which animals showed a 

vector length r > 0.1169 (which is mean plus the 95% confidence interval of the no cue 

experiment, i.e. the data shown in C) and was similar in both experiments (p = 0.36, χ2 = 0.84; 

Chi-square test). (H) The mean vector length did not differ significantly between the 

experiments with the green and blue sun stimulus (p = 0.43, χ2 = 0.64; Kruskal-Wallis-Test). 

White horizontal lines indicate the median vector length. The boxes show the interquartile range 

and whiskers extend to the 2.5th and 97.5th percentile. n.s. indicates a difference that is not 

significant: p > 0.05. 
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Fig. 3. Using a panoramic skyline for directed flight behavior. (A-B) Orientation of monarch 

butterflies with respect to a panoramic skyline with a variable height (A; N = 25) or a flat profile 

(B; N = 18). Dashed inner circle shows r = 0.2. (C) Over the entire experiment, the mean vector 
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length r (bin size: 10s) was always higher when the panoramic skyline contained variable 

heights. Shaded areas indicate the 25-75% quantile. (D, E) Histogram of heading changes after 

a 180° relocation of the stimulus (bin size: 5°) for the panorama experiments with a variable 

height (D) and a flat profile (E). (F) Exemplary flight trajectories of one animal that flew with 

respect to a panoramic skyline with a variable height profile (blue trajectory) and one that 

oriented to a panoramic skyline with a flat profile (black trajectory). Black arrow indicates the 

position of a specific point in the visual scenery in the beginning of the experiment. (G) The 

angular speed of the animals over the eight minutes flight. The angular speed decreased when 

the panoramic skyline with variable heights was visible (blue curve) compared to the flat 

panorama (black curve). The shaded area indicates the 25-75% quantile. (H) The orientation of 

butterflies with respect to a grating pattern (N = 21). Dashed inner circle indicates a vector 

length of 0.2. The red sector shows the circular SD of the animal’s group orientation. (I) The 

frequency of observed angular velocities (window size of each bin: 30°) when the butterflies 

had a flat panoramic skyline (upper plot, same data as G), the panorama with a variable height 

profile (middle plot, same data as G) or a grating pattern as orientation reference. (J) The 

number of “oriented” butterflies was defined as r > 0.1194 (which is the 95% confidence 

interval of the flat panorama experiments, i.e. the data shown in B, C) and was similar between 

all experiments (p = 0.26, χ2 = 1.30; Chi-square test). (K) The vector length of the “oriented” 

animals did not differ significantly between the experiments with the skyline panorama and the 

grating pattern as visual stimulus (p = 0.48, χ2 = 0.51; Kruskal-Wallis-Test). White horizontal 

lines indicate the median vector length. The boxes show the interquartile range and whiskers 

extend to the 2.5th and 97.5th percentile. n. s. indicates no significant difference (p > 0.05) 
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Fig. 4. Combining different visual cues for orientation. (A-C) The orientation of butterflies 

with respect to the panoramic skyline with a variable height (A; N = 24) or a flat (B; N = 25) 

profile combined with a green sun or the panoramic skyline alone (C; N = 25, same data as 

shown in Fig. 3A). Dashed inner circle of the circular plots indicate an r value of 0.2. The red 

sector in A indicates the SD of the mean group direction. (D) Over an eight-minute flight, the 

mean vector length r was relatively high irrespective of whether only one of the cues, the 

variable height panorama (blue curve) or the sun (black curve) or both panorama and sun (green 

curve) were available. Shaded areas show the 25-75% quantile (E) The number of animals with 

a vector length over r > 0.1194 (which is the 95% confidence interval of the control experiment 

flat panorama). Independent of the panorama, more animals were ”oriented” when the green 

sun was added to the scenery (panorama and sun against panorama: p = 0.002, χ2 = 9.48; Chi-

square test; sun and flat panorama against panorama: p = 0.048, χ2 = 3.92; Chi-square test). (F) 

The orientation performance of the “oriented” animals did not differ significantly between the 

experiments with one of the cues (blue box plot = panorama only; black box plot = sun only) 
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or both cues available (green box plot) (p = 0.61; χ2 = 0.99; Kruskal-Wallis-Test;). White 

horizontal lines represent the median vector length r. The boxes show the interquartile range 

and whiskers extend to the 2.5th and 97.5th percentile. n.s. indicates no significant difference (p 

> 0.05). 
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Fig. 5. Monarch butterflies can use a combination of different cues for orientation. (A) 

Schematic illustration of the experimental procedure. We tested the use of different cues by 

presenting both cues (panorama and simulated sun, phase 1) to the butterflies and subsequently 

removed one of the cues (phase 2), either the panorama with a variable height profile (black 
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arrow) or the sun (grey arrow). In the third phase, we presented both cues to the butterflies 

before one cue was withheld in the fourth phase. Each phase lasted for 30 seconds. (B) On 

average the butterflies showed a significant decrease in their directedness when either of the 

cues was excluded. Left plot: normalized vector length (per 1 s) when the panorama (upper 

panel) or the simulated sun (lower panel) was excluded after 30 s of flight. Grey shaded areas 

in the left plots represent the 25%-75% quartile. Right plot: Box plots of the averaged 

normalized vector length (same data as in left plots). The normalized vector length dropped 

significantly when the bumps of the panoramic skyline (upper plot, p < 0.001, Z = 4.33; 

Wilcoxon signed-rank test) or the green sun (lower plot, p < 0.001, Z =3.71; Wilcoxon signed-

rank test) disappeared. *** indicates a significant difference of p < 0.001. (C) The angular speed 

increased when one cue (left panel, variable height panorama; right panel, green sun) 

disappeared (same data as in C). The angular speed increased significantly when the green sun 

(left box plot, p < 0.001, Z = -9.40; Wilcoxon signed-rank test) or the panorama (right box plot, 

p < 0.001, Z = -7.90; Wilcoxon signed-rank test) was suddenly the only available orientation 

reference. Grey shaded areas in the left plots represent the 25%-75% quartile. Box plots: white 

horizontal lines represent the median vector length. The boxes indicate the interquartile range 

and whiskers extend to the 2.5th and 97.5th percentile. *** indicates a significant difference of 

p < 0.001. (D) The normalized vector length (per 1 sec.) of oriented, individual butterflies is 

shown over the 2 minute experiments. Individual butterflies used different cues for orientation. 

Some butterflies relied on one of the cues, panorama (upper panel) or the simulated sun (middle 

panel), and their performances decreased when this cue was excluded. A few butterflies used 

both cues and showed a high orientation throughout the entire experiment (lower panel). 
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