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ABSTRACT: 

Developmental exposure of embryos to maternal hormones such as testosterone (T) 

in the avian egg influences the expression of multiple traits, with certain effects being 

sex-specific and lasting into adulthood. This pleiotropy, sex dependency, and 

persistency may be the consequence of developmental programming of basic 

systemic processes like adrenocortical activity or metabolic rate. We investigated if 

experimentally increased in ovo exposure to T influences hypothalamus-pituitary-

adrenal function, i.e. baseline and stress-induced corticosterone (Cort) secretion, and 

resting metabolic rate (RMR) of adult male and female House sparrows (Passer 

domesticus). In previous experiments with this passerine bird we demonstrated 

effects of embryonic T exposure on adult agonistic and sexual behavior and survival. 

Here we report that baseline Cort levels and the stress secretion profile of Cort are 

modified by in ovo T in a sex-specific and life-history stage dependent manner. 

Compared to controls, males from T-treated eggs had higher baseline Cort levels 

whereas females from T-treated eggs showed prolonged stress-induced Cort 

secretion during the reproductive but not the non-reproductive phase. Adult RMR was 

unaffected by in ovo T-treatment but correlated with integrated Cort stress secretion 

levels. We conclude that exposure of the embryo to T programs the hypothalamus-

pituitary-adrenal axis in a sex-specific manner that in females depends, in expression, 

on reproductive state. The modified baseline Cort levels in males respectively stress-

induced Cort levels in females may explain some of the long-lasting effects of 

maternal T in the egg on behavior and could be linked to previously observed 

reduced mortality of T-treated females.   
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INTRODUCTION 
 

The developmental pathways from genes to phenotype include environmental and 

maternal non-genomic input which leads to variation in phenotypes (Gilbert and Epel, 

2009; Monaghan, 2008). Maternally provisioned hormones represent such non-

genomic input, contributing to the developmental hormonal milieu and modifying 

phenotype development in vertebrates (mammals: Dantzer et al., 2013; Dloniak et al., 

2006; Meise et al., 2016; birds: Schwabl, 1993; Schwabl and Groothuis, 2010; 

Groothuis et al. 2019; Podmokla et al. 2018; fishes: Feist et al., 1990; Giesing et al., 

2011; reptiles: Lovern and Wade, 2003; Paitz and Bowden, 2009; amphibians: 

Meylan et al., 2012). The effects of maternal hormones, such as androgens in the 

avian egg, on offspring traits can be expressed during early development (e.g. 

Schwabl, 1996; Schwabl et al., 2007), in juveniles (e.g. Schwabl 1993), and in adults 

(e.g. Eising et al., 2006; Hsu et al., 2016; Partecke and Schwabl, 2008; Rubolini et al. 

2006; Ruskaanen et al., 2013; Schweitzer et al., 2013; Strasser and Schwabl, 2004). 

Multiple traits, ranging from growth to morphology, to physiology, to behavior can be 

influenced by a single hormone such as testosterone (Groothuis and Schwabl, 2008; 

Hsu et al., 2016; Parolini et al., 2017; Schwabl & Groothuis, 2010; Schweitzer et al.; 

2013; Tobler et al., 2007; Treidel et al., 2013; Tschirren et al., 2007) and, on top of 

this pleiotropy (Dantzer and Swanson,  2017; Navara and Mendonça,  2008), effects 

can be sex-specific (e.g. Sockman et al., 2007; Tschirren, 2015). 

 The mechanisms underlying pleiotropy, sex-specificity, and persistency of 

hormonally mediated maternal effects remain unclear. Although maternal steroids 

may interact with the hormonal signaling processes associated with developmental 

organization of sex differences (Adkins-Regan, 2012; Carere and Balthazart, 2007) 

they likely also operate through mechanisms independent of and possibly well before 

sexual differentiation (Kumar et al., 2018; Schwabl and Groothuis, 2010). Pleiotropy 

may result from evolved hormonal integration of suites of traits and physiological 

tradeoff, or it may be the consequence of modification of fundamental systemic 

processes that impact the function of other functions (Groothuis and Schwabl, 2008). 

Here we investigated the effects of developmental exposure to T on two fundamental 

Jo
ur

na
l o

f E
xp

er
im

en
ta

l B
io

lo
gy

 •
 A

cc
ep

te
d 

m
an

us
cr

ip
t

http://www.sciencedirect.com/science/article/pii/S1095643308007137
http://www.sciencedirect.com/science/article/pii/S1095643308007137


 

organismal processes that are known to impact and modify many other systems, 

functions, and traits - the hypothalamus-pituitary-adrenal (HPA) axis (Crino et al., 

2017; Hau and Goymann, 2015; Hau et al., 2016; Sapolsky et al., 2000) and 

metabolic rate (Biro and Stamps, 2010; Careau and Garland, 2012; Glazier, 2015; 

Mathot et al., 2015; Mathot and Dingemanse, 2015; Holtmann et al., 2017).  

 Vertebrate HPA activity is characterized by dynamic functional states. Baseline 

“tone” of HPA-regulated glucocorticoid secretion varies with changing energy 

requirements associated with the light/dark cycle, activity levels, and life history stage 

to maintain energy homeostasis (Landys et al., 2006; Sapolsky et al., 2000); rapid 

stimulation of the HPA axis in response to stressors leads to a fast, episodic increase 

of circulating glucocorticoid titers, redirecting physiology and behavior into an 

emergency life history state (Wingfield et al., 1998). Termination of the stress 

response and recovery from stress activation is mediated by negative feedback to 

down-regulate glucocorticoid secretion to baseline levels which can vary with sex, 

age, past stress experience, and genotype (e.g. Baugh et al., 2012; Gomez et al., 

1998; Gormally and Romero, 2018; Novais et al., 2017; Sapolsky et al., 1986; 

Schmidt et al., 2012; Schwabl, 1995). Because baseline and stress-induced 

glucocorticoid levels influence many functions, from metabolism, immune defense, 

reproduction, and behavior, to risk of contracting disease (Hau and Goymann, 2015; 

Hau et al., 2016; Sapolsky et al., 1986; Vágási et al. 2018), the developmental 

programming of HPA activity could be a common denominator underlying the diverse 

long-lasting effects of maternal androgens. Previous research showed modification of 

plasma levels of corticosterone (Cort), the major avian glucocorticoid, by embryonic 

exposure to androgens in the American kestrel (Falco sparverius) where nestlings 

from androgen-treated eggs (testosterone plus androstenedione) showed higher Cort 

levels than those from control eggs (Sockman & Schwabl, 2001). Long-lasting effects 

of exposure to maternal androgens in the eggs on baseline Cort levels and the stress 

response of adults have, however, to the best of our knowledge, not been reported 

before.  
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Resting metabolic rate (RMR) reflects the energy requirements of basic cellular 

and organismal function (Hulbert and Else, 2000) and it varies, across species for 

example with pace of life (e.g. Wiersma et al., 2007) and, within species with sex, life 

history stage, and season (Aschoff and Pohl, 1970; McNab, 2012; Wikelski et al., 

1999). Maternal hormonal modification of offspring metabolic rate could impact an 

offspring’s phenotype by effects on development rate (Schwabl et al., 2007; Martin 

and Schwabl, 2008), scope of performance (Wiersma et al., 2007), and overall energy 

costs of living (Hulbert and Else, 2000; Speakman, 2000). Theoretical considerations 

and empirical studies suggest that individual differences in metabolic rate may lead to 

individual variation in behavior (e.g. Biro and Stamps, 2010; Careau et al., 2012; 

Holtmann et al., 2017; Killenn et al., 2013; Mathot et al., 2015) and impact aging, 

mortality, and fitness (Burton et al., 2011; Harmann, 1956; Perez-Campo et al.,1998). 

Experimentally elevated in ovo androgen exposure increased RMR in nestling (T 

treatment, Tobler et al., 2007) and adult zebra finches Taeniopygia guttata (Nilsson et 

al., 2011; same individuals as in Tobler et al., 2007, sexes not identified) and in both 

sexes of adult Pied flycatchers Ficedula hypoleuca (combined T plus 

androstenedione treatment, Ruuskanen et al., 2013). However, RMR and field 

metabolic rate did not differ between chicks hatched from T- or oil-injected eggs of 

Black-headed gulls Larus melanocephalus (Eising et al., 2003).  

 Previous work with house sparrows in our laboratory has shown that the 

injection of T into the yolk of freshly laid eggs (the same dose was used in the present 

study) influences agonistic behavior of both sexes in non-reproductive and 

reproductive contexts (Strasser and Schwabl, 2004; Partecke and Schwabl, 2008) 

and sexual behavior of males (Partecke and Schwabl, 2008). We also showed 

previously that, in a common-garden aviary setting, in ovo T exposure increased the 

survival of adult females but not males, particularly during the reproductive phase 

(Schwabl et al., 2012). These persistent, pleiotropic, and sex-specific effects of 

embryonic exposure to T on adult behavior and mortality could be a consequence of 

developmental programming of the HPA axis and/or metabolic rate. To address this 

hypothesis we measured baseline and stress-induced Cort levels and resting 

metabolic rate (RMR) of mature male and female house sparrows that had been 
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exposed to a dose of testosterone (T) or vehicle in ovo. To assess potential effects of 

life history stage (season) on the expression of developmental hormonal 

modifications, we investigated HPA activity and RMR during two stages: first, during 

the non-reproductive phase (on short days, before photostimulation) and then during 

the reproductive phase (on longer days, after photostimulation); at these time points 

the birds were approximately 8, respectively 12 months old. 

  

MATERIALS AND METHODS  

 

Ethical Statement 

All experimental procedures were approved by the Washington State University 

Animal Care and Use Committee as were the housing facilities. 

 

General Field Procedures 

We monitored nest boxes hung in cattle barns nearby Pullman, WA (46.7º N, 117.2º 

W) daily for new house sparrow eggs. Each freshly laid egg of a clutch was labeled 

with a non-toxic marker to identify laying order, replaced with a wooden dummy egg, 

brought into the lab, and stored at room temperature until a clutch was complete. The 

third egg of each clutch was immediately frozen at -20º C for later measurement of 

the naturally occurring yolk T concentration (in each clutch).  

 

Egg injections 

Following previously published protocol (Schwabl, 1996a; Strasser and Schwabl, 

2004), all eggs of a clutch, except for the third egg (see above), were injected into the 

yolk either with 200 ng of T in 5 µL of sesame oil or with 5 µL of sesame oil only within 

24 h of the last egg of a clutch being laid. This dose is equivalent to the highest doses 

of maternal T measured in clutches of the house sparrow in our study populations 

(Egbert et al., 2013). Of the three androgens (testosterone (T), androstenedione (A4), 

and 5a-dihydrotestosterone (DHT)) measured in yolks of house sparrow eggs, T is 

the one with the highest concentrations, its concentrations varying greatly between 

clutches (Egbert et al., 2013). An injected dose of 200 ng of T produced various long-
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lasting effects in previous studies (Partecke and Schwabl, 2008; Strasser and 

Schwabl, 2004; Schwabl et al., 2012). We alternated T and oil injections between 

clutches to control for seasonal changes in egg quality or other variables that could 

influence offspring phenotype. After injection, the hole in the eggshell was sealed with 

OpSite® transparent wound dressing (Smith & Nephew Medical, Ohio). The eggs of 

each clutch were then returned together into their original nest for incubation and 

rearing of nestlings until the age of 8–9 days. Due to this design we were unable to 

match nestlings to egg laying order. A total of 17 clutches were injected with T, 20 

clutches received oil injections. Laying date and clutch size did not differ significantly 

between treatment groups (laying date C-clutches: median May 9, range 69 days; T-

clutches: median April 30, range 75 days, Mann-Whitney U = 307.5, n(C-clutches) = 

20, n(T-clutches) = 17, p = 0.93; clutch size: C-clutches: mean 4.46, s.e.m. 1.7 eggs; 

T-clutches: mean 4.2, s.e m. 1.3 eggs, F1,35 = 1.05, p = 0.31). The laying dates cover 

the first half of the normal breeding season of our house sparrow population which 

lasts, on average, from late March to late July (unpublished data). Injections reduced 

hatching success compared to untreated eggs (Stewart and Westneat, 2012), but T- 

and C-groups did not differ in hatching success (C-eggs: 56%, T-eggs: 45%; F = 2.77, 

df = 1, p = 0.11). Brood size at hatching and sex ratio did not differ (C-clutches: mean 

2.0, s.e.m. 2.6 nestlings; sex ratio 0.60 m/f; T-clutches: mean 2.7, s.e.m. 1.9 

nestlings, sex ratio 0.53 m/f; F1,28 = 1.09, p = 0.31). Endogenous yolk T 

concentrations of clutches (measured in 3rd eggs) were similar in T- and C-clutches. 

T-clutches: mean = 41.1 pg/mg, s.d.m. = 18.2 pg/mg, range 17.7 – 71.2 pg/mg, n = 

16; C-clutches: mean = 34.3 pg/mg, s.d.m. = 15.9 pg/mg, range 12.9 – 79.7 pg/mg, n 

= 14; F1,29 = 1.17, p = 0.289). 

 

Housing 

We collected the nestlings of 15 successfully hatched T- respectively 15 C-clutches 

from their nests at an age of 8–9 days, banded them with a numbered aluminum ring 

and a color band for individual identification, and hand-reared them in the laboratory 

with Kaytee Exact Hand-Feeding Formula (Kaytee Products, Chilton, WI). Nestlings 

were first housed by brood in a nest box (12.5 x 15 x 12.5 cm) and after fledging in a 
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cage (45 x 22 x 25 cm). When birds were feeding independently at an age of 32.7  

1.05 days (mean  s.e.m.), they were moved to individual cages (45 x 22 x 25 cm) in 

three adjacent indoor rooms and supplied ad libitum with a mixture of commercial wild 

bird seeds and chick starter pellets and water. Birds experienced a simulated natural 

photoperiod of Pullman (46°43’N, 117°10’ W) and temperature conditions varying 

between 20 - 28 ºC. Individuals of both treatment groups and sexes were intermixed 

in rooms and able to hear and see each other. 

 

Gonad size 

To assess reproductive state we measured gonad size on March 10 and 11 (approx. 

photoperiod 11.5 L 12.5 D) by laparotomy under local anesthesia using lidocaine 

cream (Wingfield & Farner, 1976). Incisions were treated with Actihaemyl gel 

(SolcoSwitzerland) and sealed with Histoacryl (Braun). We measured gonad size 

again between May 12 and June 8 (approx. photoperiod 15L 9D) when the 

experiment was terminated and birds were sacrificed. Using calipers, we took the 

width of the left testis to the nearest 0.1 mm in males and the diameter of the largest 

ovarian follicle to the nearest 0.1 mm in females. We did not measure gonad size in 

January because during this time birds were kept on short days (approx. photoperiod 

8.5 L 15.5 D) that do no stimulate gonadal growth in the house sparrow (Donham et 

al., 1982). Egg laying starts in our field populations on average in late March.  

 

Stress protocol  

In January (4-11, approx. photoperiod 8.5 L 15.5 D) and April (4-11, approx. 

photoperiod 13 L 11 D) we determined baseline and stress-induced Cort levels by 

applying a standard capture and handling protocol to all individuals. On each 

sampling day investigators entered each of the three bird rooms to take blood 

samples at 0900 hours and chose an equal number of T- and C-treated house 

sparrows of both sexes; depending on the number of available personnel 2 or 3 birds 

per room were bled at the same time on a given day. Immediately after capturing an 

individual bird from its cage, an investigator obtained an initial blood sample (50 µL) 

by puncturing a brachial wing vein with a 25-gauge needle and collecting blood into 
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heparinized microcapillary tubes. The initial blood samples, referred to as 0 min after 

capture, were collected within approx. 3 min after entering the bird room (mean delay 

during January sampling = 50 sec, range 9 – 186 sec; mean delay during April 

sampling = 60 sec; range 11 – 114 sec). Samples obtained after such short delay 

after capture approximate baseline, non-stress Cort levels (e.g. Romero and Reed, 

2005; Schwabl et al. 2016; Small et al., 2017). Indeed, the initial Cort levels (labeled 

as time 0) were not related to sampling delay (both January and April sampling p > 

0.05). After collecting the initial sample, each bird was individually kept in a cloth 

holding bag for a 60-min period of restraint, with subsequent blood samples taken at 

15, 30, and 60 min after entering the bird room to obtain stress-induced Cort levels. 

Blood samples were kept on ice for up to 2 h and then centrifuged at 9000 rpm for 10 

min. Plasma was removed and frozen at -20°C until hormone analysis. Housing room, 

bleeder identity, and bleeding order in and among rooms had no effect on initial Cort 

levels (all p > 0.05).  

 

Resting metabolic rate 

We performed respirometry in January (22 – 31, approx. photoperiod 9 L 15 D) and 

again in April (18 – 27, approx. photoperiod 14 L 10 D), when gonads were 

undeveloped, respectively growing. Resting metabolic rate (RMR) was calculated by 

measuring O2 consumption in an open flow, push-through respirometry system 

(Withers, 1977). Each afternoon at 15:00 h, a random set of seven birds was 

transported in cloth bags from their living cages to an adjacent climate-controlled 

chamber, where all measurements took place under simulated natural day length 

conditions. Metabolic rate was measured continuously from 23:00 to 09:00 of the 

following day, using 3.8 l plastic jars with screw-on lids as metabolic chambers, at 25 

± 2°C, within the thermoneutral zone (McNab, 2012). We monitored ambient 

temperature (25 ± 1.5 °C) in the base-lining (control) respirometry chamber with an 

electronic thermometer (Radio Shack Inc.). Treatment groups and sexes were equally 

distributed within and across measurement sessions. During metabolic 

measurements, birds had free access to food and water. To quantify O2 consumption 

we used ultra-low permeability Tygon tubing with an internal diameter of 0.32 mm. 
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Room air was pumped through both a Drierite column (to remove water vapor) and a 

CO2 scrubber (Ascarite) before passing into a gas mass flow controller (Cole-Palmer 

Inc.). Flow rate out of the gas mass flow controller was set to 4.1 L/ min. The air 

stream was then split by a manifold chamber (Sable Systems). Air from the chambers 

was sent through a TR-RM8 respirometer multiplexer (Sable Systems) and a second 

Drierite column before being sub-sampled at a rate of 150 mL/min before entering the 

CO2 analyzer (CA 10a, Sable Systems). The CO2 analyzer was calibrated each 

morning with air from a known gas mixture (5% CO2). The sample air was then 

scrubbed of CO2 in a second Ascarite column before moving to the O2 analyzer (FC 

10a, Sable Systems). Room air that had been scrubbed of water vapor and CO2 was 

pumped through an O2 analyzer as a control; the difference between the two values 

(sample air and control air) was recorded.  

 During each trial, we programmed our automated multiplexed respirometry 

system to measure O2 consumption and CO2 production for each bird at 1 s intervals 

for 10 min per chamber, then switch to the next chamber in series. After the 

completion of each series of seven 10-min sampling periods, we measured the same 

gas concentrations in an empty chamber to obtain baseline gas levels passing 

through experimental chambers. We then began a new series of seven 10-min 

sampling periods, repeating this process throughout the night. By the end of the trial 

each morning, we had acquired at least six 10-min sampling intervals per bird for the 

previous night. To determine RMR for each bird during the night, we identified the 5-

min period of lowest O2 consumption per night for each bird. Birds were weighed 

before and after respirometry and the mean of these measurements was used to 

obtain mass-specific RMR (mRMR) expressed as ml O2/(min x g) (Fig. 3). 

Corticosterone assay 

We measured plasma Cort concentration by radioimmunoassay (Wingfield et al., 

1992). Antiserum was purchased from Esoterix Endocrinology (Calabasas Hills, 

USA). Standard steroids were obtained from Sigma-Aldrich (Munich, Germany) and 

3H-labeled corticosterone from Perkin Elmer (Rodgau, Germany). All samples of an 

individual including both seasons (January and April) and paired samples from T- and 

C-birds were assigned to the same purification run (N=5) and assay (N=6). Plasma 
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was equilibrated with a small dose of tritiated corticosterone (2000 cpm) to measure 

subsequent recovery. Corticosterone was extracted with redistilled dichloromethane 

(4 ml) following an established protocol (Hall et al., 1987). Each sample was then 

assayed in duplicate. Extraction recovery was 76% ± 0.4% (mean ± SE). Intra- and 

inter-assay variation (N = 6) varied between 6–10%. The least detectable plasma 

concentration (calculated for mean recovery rate and mean plasma volume) was 72.4 

pg/mL. 

 

Yolk T assay 

As a measure of the naturally occurring inter-clutch variation in yolk T concentration 

we quantified yolk T concentrations of the third egg of each clutch using separation 

protocols and radioimmunoassay as described (Schwabl, 1993). Weighed amounts 

(approx. 200 mg) of defrosted and homogenized yolk were diluted with 200 µl distilled 

water. After adding 20 µl tritiated A4, 5α-DHT, T, and 17b-estradiol (E2) to each 

sample for calculation of recoveries, samples were extracted twice with 4 ml 

petroleum ether/diethyl ether (30/70%), followed by precipitation with 90% ethanol to 

remove neutral lipids. Subsequently, the hormones were separated on diatomaceous 

earth chromatography columns. Briefly, samples were reconstituted in 10% ethyl 

acetate in 2,2,4-trimethylpentane and then transferred to the columns. A4 was eluted 

with a concentration of 2% ethyl acetate in 2,3-trimethyl-pentane, 5α-DHT with 10% 

ethyl acetate, T with 20% ethyl acetate, and E2 with 40 %. T concentrations were 

measured in double competitive-binding radioimmuno-assays (RIA) with 3H-labelled T 

(NET 553) and was obtained from PerkinElmer Life and Analytical Sciences. T 

antibody was T 3003 (Wien Laboratories). Average T recovery was 68.4%. Mean 

intra-assay variation was 8.4%. Detection limits (pg/mg yolk) of the steroid RIA was 

0.05 pg/mg. 

Data analyses 

Statistical analyses were performed in SPSS 25/26 using linear mixed effect models 

(LMEs) fitted by restricted maximum likelihood. To meet the assumptions of LME, 

response variables were transformed for normality, when needed; model residuals 

were normally distributed.  
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 Testes and ovary size were analyzed using LME with reproductive state 

(March or May-June) and egg treatment as fixed factors.  

 We ln-transformed Cort concentrations before LME to analyze basal and 

stress-induced levels. Cort levels were analyzed separately for the non-reproductive 

(January) and reproductive (April) state to reduce the number of complex multiway 

interaction that are difficult to interpret. In these analyses time (0, 15, 30, 60 min of 

handling stress) was a repeated measure effect and sex and treatment (T or C 

injection) were fixed effects; the brood specific variables of hatch date (Julian date) 

and ln-transformed yolk T concentrations (measured in the third egg of each clutch to 

assess inter-female yolk T variation) were used as covariates.  

 Body mass was analyzed by LME with reproductive state (non-reproductive 

(January) versus reproductive (April)) as repeated measure effect, sex, and egg 

treatment as fixed factors, and yolk T concentration (ln-transformed) and Julian date 

(brood hatch date) as covariates. Yolk T concentrations and hatch date had similar 

means and ranges in T- and C-clutches.  

 RMR was corrected for body mass to generate mass-specific RMR (mRMR) 

which was analyzed by LME with reproductive state (non-reproductive (January) 

versus reproductive (April)) as repeated measure effect. Fixed effects were sex and 

treatment; the brood-specific variables (hatch date and ln yolk T) were included as 

covariates. To assess effects of Cort levels on mRMR we included basal and 

integrated Cort concentrations (total Cort levels under the curve of the stress 

response) as covariates.  

 All models included nest ID as random factor to account for multiple siblings in 

broods (see injections above). We used backward elimination of least significant 

terms and applied Aikaike's Information Criterion to evaluate and select best models 

(Aikaike, 1973). We report statistics for fixed effects of the best model. When 

reporting non-significant effects of co-variates such as hatch date and clutch yolk T 

we used output from initial models that included all variables.   
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RESULTS 

Gonadal growth (Fig. 1) 

As expected, gonads were small and undeveloped in March and increased in size 

between March and May/June (reproductive state: testes F1,34 = 327.50, p < 0.001, 

ovaries F1,24 = 41.270, p < 0.001; Fig. 1). Testes growth was not affected by egg 

treatment (state*treatment: F1,34 = 1.920, p = 0.17), although males from T-treated 

eggs tended to have somewhat larger testes than controls (treatment: F1,34 = 3.171, p 

= 0.08). T treatment did not influence ovarian follicle size and growth (treatment: F1,24 

= 0.626, p = 0.44, state*treatment: F1,24 = 0.390, p = 0.53).  

 

Baseline corticosterone and stress response profile (Fig. 2): 

Cort levels at time "0 min" (see Methods for exact times) were not related to sampling 

delay (up to 186 sec, p > 0.05, also see Methods) and thus can be assumed to 

represent baseline Cort concentrations. Baseline Cort levels were higher after the 

onset of gonad growth (April) than before (January) (F1,94 = 28.444, p < 0.001). Sex 

and treatment interacted to affect baseline Cort levels (sex*treatment: F1,101 = 5.460, 

p = 0.02), with slightly higher levels in T- than C-males (C: mean = 1.46 ng/ ml, s.e.m. 

= 0.11; T: mean = 1.79 ng/ml, s.e.m. = 0.15), but no difference in females (C: mean = 

1.66 ng/ml, s.e.m. = 0.15; T: mean = 1.67 ng/ml; s.e.m. = 0.17). Baseline Cort levels 

were neither related to hatch date (F1, 46 = 0.46; p = 0.831) nor to endogenous yolk T 

concentrations (F1, 37 = 1.93; p = 0.173).  

 During the non-reproductive phase (January) neither sex nor treatment (nor 

the initially included 3-way and 2-way interactions) had effects on plasma Cort levels 

during the stress test (sex: F1,149= 1.556, p = 0.214; treatment: F1,149 = 1.084, p = 

0.299); stress time had a strong effect (F3,127 = 349.80, p < 0.001). In contrast, during 

the reproductive phase (April) stress time (F3,122 = 178.87; p < 0.001) and the 3-way 

interaction of stress time, sex, and treatment (F4,61  = 2.69; p = 0.039) affected Cort 

levels. Sex and treatment alone as well as their interactions with stress time had no 

effect (all p > 0.27). When the analyses were conducted separately for each sex, 

treatment had a main effect on Cort levels in females during the reproductive phase 

(F1,100 = 6.46; p = 0.013), but not the non-reproductive phase (F1,114 = 0.037; p = 
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0.847). There was no main effect of treatment in either phase in males (both p > 

0.256). Note the prolonged stress-induced Cort secretion in females from T-treated 

eggs compared to females from control eggs in April, but not in January: while the 

Cort levels of control females ceased rising and started to decrease by 15 min they 

continued to rise until 30 min in T-treated females (Fig. 2D). This profile resembles 

that observed in both sexes (regardless of treatment) before the onset of gonad 

growth (January). Post-hoc analyses restricted to females during the reproductive 

phase (April) reveal significantly higher Cort levels at 30 min in females from T-

treated compared to those from control eggs (F1,29 = 4.561; p = 0.043). Hatch date 

(F1,40 = 0.27; p = 0.606) and endogenous yolk T concentration (F1, 41 = 1.39; p = 

0.245) had no effect on stress-induced Cort levels. 

In summary, yolk T injections resulted in overall slightly elevated baseline Cort 

levels in males but not females and protracted stress-induced Cort secretion in 

females but not males, but only after onset of gonadal development. 

 

Body mass 

Body mass was significantly influenced by reproductive state (F1,93 = 16.319; p < 

0.001) and the interaction of reproductive state and sex (F1,93 = 4.524; p = 0.036), but 

it was not affected by treatment (F1,38 = 1.327; p = 0.256) and only marginally by sex 

(F1,122 = 3.645; p = 0.059). It was related to hatch date (F1,38 = 4.583; p = 0.039), with 

individuals of broods hatched later in the season being heavier as adults than those 

hatched earlier. Mass was not related to endogenous clutch yolk T concentration (F1, 

28  = 0.212; p = 0.649).  

 

Mass-specific resting metabolic rate (mRMR) (Fig. 3) 

Treatment, sex, and reproductive state had no main effects on mRMR (treatment: 

F1,384 = 1.755; p = 0.194; sex: F1,127 = 1.415; p = 0.236; reproductive state: F1,102 = 

2.988; p = 0.087). Sex and reproductive state interacted to influence mRMR (F1,102 = 

4.74; p = 0.032), reflecting an increase in mRMR by about 5% in males but not in 

females after onset of gonad growth (April) compared to when gonads were 

undeveloped in January. Two- and three-way interactions were not significant (all p > 

Jo
ur

na
l o

f E
xp

er
im

en
ta

l B
io

lo
gy

 •
 A

cc
ep

te
d 

m
an

us
cr

ip
t



 

0.10). The covariates hatch date, yolk T, and baseline Cort made no significant 

contribution to variation in mRMR (hatch date: F1, 31 = 0.011; p = 0.917; yolk T: F1, 28= 

1.72; p = 0.20; baseline Cort; F1,109. = 0.006; p = 0.941). The final model included a 

significant effect of total integrated Cort during stress (area under the curve from time 

0 min to time 60 min in the stress test) (F1,118 = 6.030; p = 0.016), suggesting that 

mRMR and overall stress-induced Cort production are positively correlated with each 

other.  

 

 

DISCUSSION 

The main results of this experiment summarize as follows. In ovo T treatment 

programmed sex- and state-specific modifications of HPA activity: Males exposed to 

T in the egg showed slightly higher baseline Cort levels but a similar stress response 

compared to control males; females exposed to T in the egg, in contrast, showed 

similar baseline Cort levels compared to control females, but an exaggerated 

secretion of Cort during stress; however, this effect in females became only evident 

after the onset of ovarian growth. Mass-specific metabolic rate (mRMR) was not 

modified by yolk T injections but related to overall stress Cort secretion. These results 

do not support the hypothesis that previously reported pleiotropic effects of yolk T on 

adult behavior result from long term modification of basal metabolic rate. 

Programming of the HPA axis (baseline secretion in males and stress-induced 

secretion in reproductive females) by yolk T, on the other hand, may be linked to 

some of the observed behavioral effects in adult males and females and differences 

in survival rate of adult females.  

 Dynamic changes in circulating glucocorticoids of vertebrates regulate 

metabolic support of "routine" day-to-day performance as well as physiological and 

behavioral responses to unpredicted perturbation of homeostasis by stressors 

(Sapolsky et al., 2000; Wingfield et al., 1998). Low, baseline circulating levels act via 

the high affinity GR I receptor system to regulate intermediary metabolism, while high, 

stress-induced Cort levels act via the low affinity GR II receptor system to induce 

transient physiological and behavioral responses to cope with stressors (de Kloet et 
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al., 1990; Lattin and Romero, 2015; Romero, 2004). In males, we found slightly 

increased baseline Cort levels in T-treated individuals, while in females the stress-

induced Cort secretion profile, but not baseline Cort was affected by in ovo T 

treatment. We have no explanation for the mechanism by which developmental T 

exposure might program increased baseline Cort secretion in males, but a likely 

explanation for the changed Cort stress secretion profile of females may be 

modification of the negative feedback system for down-regulation of stress-induced 

Cort (Liebl et al., 2013). There is good evidence in rodents and birds that 

developmental programming of the HPA axis results in changes of adult stress 

glucocorticoid attenuation via the permanent down/up-regulation of brain GR II 

receptors (e.g. Banerjee et al., 2012; Weaver et al., 2004); and this can occur in a 

sex-specific manner (McCarthy et al., 2009; McCarthy and Nugent, 2013; Menger et 

al., 2010). The absence of a difference in the stress response profile between T- and 

control females before the onset of ovarian growth suggests that photostimulation 

and/or activation of the hypothalamus-pituitary-ovary axis are required for the 

expression of this maternal effect in a state-dependent manner; we did, however, not 

detect differences in ovarian follicle size (this study) or circulating levels of ovarian 

steroids (progesterone, testosterone, 5α-dihydrotestosterone, and 17ß-estradiol) 

between adult females from T-treated and control eggs (Partecke and Schwabl, 2008) 

that could be related to the modified stress response.   

 Regardless of the exact nature of the underlying mechanisms, elevated 

baseline Cort in males and prolonged secretion of Cort during stress episodes in 

females could impact performance (Patterson et al., 2014; Vitousek et al., 2014). This 

programming might cause some of the behavioral effects of yolk T that we reported 

previously (Partecke and Schwabl, 2008; Strasser and Schwabl 2004); and, one 

could also speculate that the modified stress Cort secretion profile of females during 

the reproductive phase is related to a reduced mortality risk of T-treated compared to 

control females that we found in a previous aviary study (Schwabl et al., 2012). Free-

living house sparrows caught at their nests exhibited substantial individual variation of 

Cort levels in response to 30 min of standardized capture and handling stress 

(Lendvai et al. 2007); and, in females, 30 min stress-induced Cort levels were 
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negatively related to inquisitive behavior in response to novelty, a component of 

coping style (Lendvai et al. 2011).  

Our in ovo T treatment did not affect adult mass-specific RMR. This outcome 

differs from experimental studies of two other passerine bird species, domesticated 

zebra finch (Taeniopygia guttata) and wild pied flycatcher (Ficedula hypoleuca) that 

both reported enhanced adult metabolic rate by in ovo androgen treatment (T in the 

zebra finch (Nilsson et al., 2011); T plus androstenedione in the pied flycatcher 

(Ruskaanen et al., 2013)). A third study conducted with the non-passerine Black-

headed gull (Larus ridibundus) did, however, not detect any effects of egg T treatment 

on RMR and field metabolic rate of nestlings (Eising et al., 2003). It remains to be 

understood why yolk androgen manipulation influences RMR in some species but not 

in others. Nevertheless, the absence of an effect of T treatment on mRMR in our 

study indicates that the observed effects of yolk T on adult behavior (Partecke and 

Schwabl, 2008; Strasser and Schwabl, 2004) are not a consequence of modified 

metabolic rate (Biro and Stamps, 2010; Mathot and Dingemanse, 2015). Similarly, the 

different adult mortality rates of T-injected and control females (Schwabl et al., 2012) 

do not appear to be associated with developmentally programmed differences in 

metabolic rate and their potential consequences for health and disease. 

 Metabolic rate has been found to co-vary with baseline and stress-induced 

glucocorticoid levels at the intra-specific level (Jimeno et al., 2017; Welcker et al., 

2015; but see Buehler et al., 2012; Welcker et al., 2009). We found a positive 

correlation of mRMR with the integrated overall Cort secretion during a stress 

episode, but not with baseline Cort levels. Although we did not measure Cort and 

mRMR at exactly the same times, it is possible that our respirometry procedure which 

included confinement of the bird in a small chamber represented a stressful situation 

which triggered a Cort stress secretion response similar to that measured in the 

stress protocol. In this case, our results might suggest that developmental T exposure 

may indirectly influence RMR via modification of glucocorticoid secretion during 

stress. 
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 Our present and previous research (Partecke and Schwabl, 2008; Strasser 

and Schwabl, 2004; Schwabl et al., 2012) with the house sparrow shows that 

variation in developmental exposure to a single hormone such as T influences 

multiple adult traits, from morphology, to behavior, to the stress response. These 

effects can be sex-specific and even differ between the sexes in the specific 

components that are affected, as shown here for the HPA axis where basal Cort 

levels were affected in males but not females, and stress Cort levels in females but 

not in males. In addition, we show here for the HPA stress response that the 

expression of maternal programming depends on life history-stage and context 

(reproductive versus non-reproductive). This dependency on sex and stage adds 

another layer of complexity to hormone-mediated maternal effects that needs to be 

considered when assessing mechanisms and functions. It further supports the 

perspective that maternal steroids do not simply interfere or interact with the 

hormonal processes of normal sexual differentiation (Carere and Balthazart, 2007). 

Rather they may act through epigenetic pathways and mechanisms such as DNA 

methylation and histone modification (Forger 2016), even before organogenesis and 

sexual differentiation (Kumar et al., 2018; Schwabl and Groothuis 2010), to cause 

permanent modifications of traits.  
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In conclusion, we show that maternal androgens (T) can program components 

of the HPA axis while research with other species, focusing on a direct linkage of 

glucocorticoid stress hormones themselves across generations, has shown that in 

ovo Cort (elevated as a consequence of enhanced maternal HPA activity and stress) 

can influence offspring HPA activity (Hausmann et al., 2012; Hayward and Wingfield, 

2004; Hayward et al., 2006; Marasco et al., 2012; Nesan and Vijayan, 2016; Thayer 

et al., 2018; Zimmer et al., 2017). Apparently, the maternal organism is linked to the 

offspring via multiple non-genomic signals including various hormones that converge 

to modify the function of certain traits and systems such as the HPA axis. This 

redundancy and complexity emphasizes the significance of transmission of non-

genomic maternal information and input for development but also complicates 

progress towards a comprehensive understanding of the epigenetic developmental 

processes by which diverse hormonally-mediated and other maternal effects act and 

are integrated to shape offspring phenotype.   
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Figures: 
 

 
 
Figure 1. Testis width (A) and largest ovarian follicle diameter (B) (mean ± 1 SEM) in 
March (controls: 17 males, 12 females; T-treated: 18 males, 17 females) and 
May/June (controls: 17 males, 11 females; T-treated: 18 males, 13 females) of house 
sparrows hatched from T-treated and control eggs.  
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Figure 2. Plasma concentrations (mean ± 1 SEM) of baseline (time = 0 min) and 
stress-induced corticosterone during a 60 min standard capture and handling stress 
protocol of male (A, B) and female (C, D) house sparrows hatched from T-treated and 
control eggs in January (non-reproductive phase, A and C) and April (reproductive 
phase, B and D). January: controls: 18 males, 12 females; T-treated: 19 males, 17 
females; April: 18 males, 12 females; T-treated: 17 males, 17 females.  
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Figure 3. Mass-specific resting metabolic rate (mRMR, mean ± 1 SEM) during the 
non-reproductive (January, A) and reproductive (April, B) phase of male and female 
house sparrows hatched from T-treated and control eggs. January: controls: 18 
males, 12 females; T-treated: 19 males, 17 females; April: controls: 18 males; 12 
females; T-treated: 19 males; 17 females.  
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