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Hypoxia tolerance is unrelated to swimming metabolism of wild,
juvenile striped bass (Morone saxatilis)
Krista Kraskura1,* and Jay A. Nelson2

ABSTRACT
Juvenile striped bass residing in Chesapeake Bay are likely to
encounter hypoxia that could affect their metabolism and
performance. The ecological success of this economically valuable
species may depend on their ability to tolerate hypoxia and perform
fitness-dependent activities in hypoxic waters. We tested whether
there is a link between hypoxia tolerance (HT) and oxygen
consumption rate (ṀO2

) of juvenile striped bass measured while
swimming in normoxic and hypoxic water, and to identify the
interindividual variation and repeatability of these measurements.
HT (loss of equilibrium) of fish (N=18) was measured twice
collectively, 11 weeks apart, between which ṀO2

was measured
individually for each fish while swimming in low flow (10.2 cm s−1) and
high flow (∼67% of critical swimming speed, Ucrit) under normoxia
and hypoxia. Both HT and ṀO2

varied substantially among
individuals. HT increased across 11 weeks while the rank order of
individual HTwas significantly repeatable. Similarly, ṀO2 increased in
fish swimming at high flow in a repeatable fashion, but only within a
given level of oxygenation. ṀO2 was significantly lower when fish were
swimming against high flow under hypoxia. There were no clear
relationships between HT and ṀO2 while fish were swimming under
any conditions. Only the magnitude of increase in HT over 11 weeks
and an individual’s ṀO2 under low flow were correlated. The results
suggest that responses to the interacting stressors of hypoxia and
exercise vary among individuals, and that HT and change in HT are
not simple functions of aerobic metabolic rate.
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INTRODUCTION
In Chesapeake Bay, USA, bottom hypoxic or anoxic (dead) zones
are expanding on an annual basis, challenging the ability of aerobic
animals to find suitable habitat (Kraus et al., 2015). Weather and
currents can drive these severely hypoxic bottom waters into the
usually oxygenated surface regions to which the commercially
and recreationally valuable species striped bass, Morone saxatilis
(Walbaum 1972), has become restricted (Breitburg, 1992; Kemp
et al., 2005; Pihl et al., 1991; Scully, 2016a; Scully, 2016b). As
these fish require oxygen to accomplish energy-intensive and
fitness-dependent tasks such as foraging, predator evasion,
digestion and growth, the performance of these tasks might be
diminished under hypoxia to a level that compromises their

Darwinian fitness (e.g. Deutsch et al., 2015; Holt and Jørgensen,
2015). Therefore, if we are to assess future prospects for this fish, we
need to study the ability of individuals to perform fitness-dependent
tasks under commonly observed levels of hypoxia and the energetic
costs of these tasks.

Striped bass exposed to rapid environmental O2 depletion
sometimes die (Rice et al., 2013). More likely, they will avoid
encroaching hypoxia by swimming towards more oxygenated
locations (Kraus et al., 2015). However, it is not uncommon for
striped bass juveniles to be exposed to O2 levels near 20% air
saturation or even lower (<2 mgO2 l−1; Breitburg, 1992; Testa et al.,
2017). Physiological responses to hypoxia while swimming can be
quite different from those at rest and can vary substantially among
individuals (McKenzie et al., 2007; Nelson and Lipkey, 2015), but
could be more ecologically relevant for a species like striped bass
that is continuously active. The effects of hypoxia on sustained
swimming physiology, locomotion and behaviour has been studied
in fish (Chapman and Mckenzie, 2009; Claireaux and Chabot,
2016; Domenici et al., 2013; Weber et al., 2016), but the
interrelationship between hypoxia tolerance (HT) and
physiological performance under hypoxia is poorly known and
directly addressed here.

Oxygen consumption rate (ṀO2
) represents a proxy for aerobic

metabolic rate in fish (Nelson and Chabot, 2011) and is used to
gauge performance efficiency (Fry, 1971; Secor, 2011). All energy-
requiring activities, including swimming, must trade-off within an
animal’s available aerobic energy budget (Holt and Jørgensen,
2015; Pörtner and Knust, 2007) to avoid unsustainable anaerobic
metabolism. So, maintenance of ṀO2

while swimming in hypoxic
waters may be critical for the success of striped bass in Chesapeake
Bay. Thus, both absolute hypoxia tolerance and metabolic
responses to hypoxia while swimming could be informative and
possibly predictive of striped bass success during hypoxic events.

HT, ṀO2
under hypoxia and swimming performance in hypoxic

water are potentially linked through the various steps of the oxygen
cascade, e.g. oxygen uptake at the gill, blood oxygen transport,
cardiac function, tissue oxygen extraction from blood and
mitochondrial oxygen demand (Farrell, 2009; Hochachka et al.,
1996). All the steps of the oxygen cascade have the partial pressure
of oxygen (PO2

) as a driving force (Weibel et al., 1991) – a force that
is liable to be diminished under hypoxia. Whilst these steps are
functionally linked in an animal, differential function at any given
level may be manifest in different ways at the whole-animal level.
For instance, improved gas exchange at the respiratory surface,
more efficient convective transport of blood and more efficient
uptake and utilization of oxygen by mitochondria are all going to
improve both HT (e.g. Chapman et al., 2002; Crans et al., 2015;
Nilsson, 2007; reviewed by Mandic and Regan, 2018) and aerobic
swimming performance (Petersen and Gamperl, 2010), yet possibly
trade-off with other physiological functions. However, increasing
haemoglobin (Hb) oxygen affinity (decrease in P50, the PO2
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Hb is 50% saturated with O2; Mandic et al., 2008) or blood [Hb] or
haematocrit might improve hypoxia tolerance (Nelson et al., 2019)
but could diminish swimming performance through decreased
oxygen unloading at the tissues or increases in blood viscosity. In
contrast, differential allocation of available blood to tissues critical
to a swimming effort could improve performance at the time
(Axelsson and Fritsche, 1991), but could affect the health of tissues
deprived of blood, thereby impacting future hypoxia tolerance.
Swimming performance under hypoxia, HT and oxygen demand

are also plastic traits in many fish and can change in response to the
environment (Domenici et al., 2013; Fu et al., 2011; Fu et al., 2014;
Killen et al., 2013; Killen et al., 2016; Norin et al., 2016). These
acclimation responses are likely to be as important as physiological
capacity when coping with episodic hypoxia and may involve
substantial allocation of metabolic resources. Thus, we hypothesized
that plasticity of HT could also trade-off with an individual’s aerobic
swimming capacity, and investigated how well striped bass can
maintain ṀO2

while swimming in hypoxic waters and how this
relates to an individual’s HT and ability to acclimate to hypoxia.
We posed three main questions: (1) is the substantial variation

in HT (Nelson and Lipkey, 2015; Nelson et al., 2019) among
individual striped bass of similar size a function of their ṀO2

during
routine low speed or vigorous swimming?; (2) as HT while
swimming appears to be unrelated to HT at rest (Nelson and Lipkey,
2015), do individuals change their ṀO2

uniformly in response to
changing metabolic demand when swimming in either normoxic
or hypoxic conditions?; and (3) are HT and the increase in HT with
repetitive hypoxia exposure (Nelson and Lipkey, 2015; Nelson
et al., 2019) related to a fish’s oxygen consumption rate under
either routine or vigorous swimming conditions? To answer these
questions, we measured HT twice, collectively, in a cohort of striped
bass captured at the same time and place; between these two tests,
we measured oxygen consumption of each individual at two
different swimming speeds under both hypoxic and normoxic
conditions. As variation provides raw material for natural selection
and repeatability can set the upper limit to heritability (Dohm,
2002), we also analysed the repeatability of each metric. Our results
will help identify phenotypes that are best able to cope with future
hypoxic events and whether there are relationships or trade-offs
between hypoxia tolerance and metabolic performance.

MATERIALS AND METHODS
Fish collection and maintenance
Fish (N=18, mixed sex; for fish size, see Table 1) were collected by
beach seine from the Potomac River near its confluence with
Chesapeake Bay and transported in river water (temperature 26°C,
salinity 6 ppt) to Towson University. Fish were acclimated to lab
conditions by lowering the temperature by 2.5°C per day, gradually
switched over to a mixture of Baltimore city tap water and
commercial sea salts and kept in three 285 l tanks (N=6 per tank) at a
temperature of 18.7±0.7°C (mean±s.d.) and a salinity of 10–11 ppt
with a photoperiod cycle of 12 h light:12 h dark. Water quality was
maintained with weekly water exchanges (30–40% total volume
water) and water quality was monitored regularly ([NH3/
NH4

+]=0 ppt, [NO2
−]=0.28±1.7 ppt and [NO3

−]=62.9±33.62 ppt;
means±s.d.). Fish were fed once daily with commercial food
(Hikari® tropical food sticks), at least 6 times a week. After
10 weeks in the laboratory, all individuals were anaesthetized with
MS-222 (100 mg l−1, buffered 1:1 with NaHCO3), weighed (g),
measured (cm; total length and fork length) and tagged with a
passive integrated transponder (PIT-tag; Biomark® Inc.) for
identification purposes. Experimentation began 2 months after

tagging. Fish size at each test and the time between tests are
summarized in Table 1.

Hypoxia challenge tests
Group hypoxia challenge tests (HCT) were performed twice, at the
beginning of the experiment, ∼4 weeks before the first individual
respirometry trial (see ‘Respirometry’, below: HCT1), and 10 days
after the last respirometry trial (HCT2). Thus, these two hypoxia
challenges were conducted 11 weeks apart (Table 1, Fig. 1). The
methods described below pertain to both HCTs. All individuals
(N=18) were transferred to the experimental tank (190 l) without air
exposure and were allowed to habituate for 24 h. Feeding was
discontinued 24 h before transfer and while in the experimental tank
(temperature: HCT1 18.8°C, HCT2 18.0°C; salinity: HCT1 and
HCT2 10 ppt). Oxygen levels at the start of HCT1 and HCT2 were
92% air saturation (AS), which was reduced to an ecologically
relevant 10±2% AS over 1 h by bubbling nitrogen gas directly into
the tank (Fabrizio et al., 2017). This rate of oxygen decrease reflects
the most rapid hypoxia incursions that have been measured in
Chesapeake Bay neritic waters (Breitburg, 1992). Two calibrated
oxygen-sensing optodes (PreSens®) were used to monitor oxygen
concentration during experimentation; % AS was recorded using
a WITROX 4 (Loligo® Systems) interfaced to a computer running
WitroxCTRLv.1 (Loligo® Systems) software. Oxygen concentration
was maintained at 10.82±0.74% AS and 10.23±0.30% AS
(means±s.d.) for 4 h during HCT1 and HCT2, respectively. No
individuals lost equilibrium by this time, so oxygen concentration
was further lowered at an average rate of 1.03% AS h−1 during
HCT1, and 0.86% AS h−1 during HCT2 until they did. At the point
of loss of equilibrium (LOE; when an individual fish could not
maintain an upright position for ∼10 s), the fish was immediately
removed from the experimental tank, identified, placed in fully
oxygenated water, and the time of the LOE recorded to the closest
minute. All individuals fully recovered from both HCTs and were
also weighed and measured at this time. Recorded times were used to
determine each individual’s HT, expressed as cumulative oxygen
deficit (DCO) (Nelson and Lipkey, 2015). Briefly, to calculate the
DCO, when oxygen concentration (% AS) is plotted as a function of
time, DCO is the difference between the area under the hypothetical
curve in normoxic water (initial % AS at the beginning of the
experiment) and the actual % AS until LOE (Nelson and Lipkey,
2015). DCO for each individual was calculated by summing
integrated areas between every two time points (1 s) and is
reported as per cent multiplied by time (% h).

Respirometry
Oxygen consumption was measured in a Brett-type swim tunnel-
respirometer (Loligo® Systems)with aworking area of 28×7.8×8.2 cm
(l×w×d) and total volume of 5.25 l (measured empirically). The

Table 1. Size parameters of the fish as they progressed through the
experiment

N Mass (g) Total length (mm)
Relative time
of the test (days)

HCT1 18 23.18
15.6–31.3

132.6
119–145

0

HCT2 18 37.34
21.2–57.9

156.7
134–179

83

Swim test 17a 29.56
18.2–46.6

135.4
127–157

51
31–72

HCT, hypoxia challenge test. Data are means and range.
aOne individual did not complete the swim test but was used in both HCT tests.
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swim tunnel-respirometer bath was supplied with UV-sterilized
(Vecton®) and biologically filteredwater of the same composition as
the holding tanks. Water temperature was maintained at 19.8±1°C
with a circulating water bath (Polytemp, Polyscience®).
An individual was randomly selected by drawing lots and then

transferred to the swim tunnel-respirometer without air exposure
and acclimated for 24 h at a current velocity of 10.2 cm s−1. The
working area containing the fish was darkened at all times to
minimize stress. All respirometry tests were 45 min long and
consisted of three cycles of a 10 min measuring period interspersed
with a 5 min flush. After acclimation, the initial ṀO2

(μmol
O2 min−1) was measured in normoxic water at low flow (0.2 cm s−1;
normoxia-low flow, N-LF test; Fig. 1). Following the N-LF
measurement period, the water velocity was increased at a rate of
6 cm s−1 min−1 to the high-flow (HF) regimen of 28.9±1.7 cm s−1

[velocity equivalent to 67±3.5% of an individual’s estimated critical
swimming speed (Ucrit) as determined from a dataset on largemouth
bass, Micropterus salmoides, of similar size swum at the same
temperature; Beamish, 1970; Fig. 1]. The fish were allowed to adjust
to the high-flow conditions for 10 min before ṀO2

was again
measured (normoxia-high flow, N-HF test; Fig. 1). Next, the current
was returned to the LF velocity at the same rate (6 cm s−1 min−1),
and ṀO2

was immediately measured to assess recovery from the HF
exercise (N-LF2 test; Fig. 1). Following this measurement period,
the oxygen concentration in the water was lowered to approximately
20% AS over a period of 1 h; N2 gas was bubbled in the external
water bath, keeping fish undisturbed, and oxygen was monitored
in the swim tunnel-respirometer working area (oxygen-sensing
optodes; PreSens®) as well as outside in the water bath (galvanic
oxygen-sensing probe; OxyGuard Mini Probe, Loligo® Systems) to
ensure a homogeneous O2 environment throughout the system. The
same experimental procedure as described above was repeated
under hypoxic conditions (hypoxia-low flow, H-LF; hypoxia-high
flow, H-HF), except that a second set of low-flow measurements
under hypoxia was not made to avoid exposing the fish to excessive
hypoxia. Fish were immediately removed from the working area

after completion of the H-HF measurements. One fish was excluded
from the swimming analysis because it refused to swim in the
respirometer. Oxygen levels were maintained between 93.5% and
100% AS (mean: 97.7% AS) in the normoxia tests (N-LF, N-HF,
N-LF2; Fig. 1), and between 17% and 26% AS (mean: 20.6% AS)
in the hypoxia tests (H-LF, H-HF; Fig. 1). Before being returned
to their holding tank, each individual was anaesthetized, measured
and weighed as described above. Fig. 1 shows the experimental
work flow and abbreviations for the experimental periods. Bacterial
oxygen consumption was measured after each fish’s swimming
trials and each individual’s ṀO2

was corrected to account for this
(see ‘Data and statistical analysis’, below).

Data and statistical analysis
All data and statistical analyses were done using R v3.5.1 (2018).
ṀO2

(μmol O2 min−1) was calculated as: ṀO2
=(Δ[O2]fish−

Δ[O2]background)×(VT−M), where Δ[O2] is the change in oxygen
concentration in water over time (μmol l−1 min−1), VT is the volume
of the swim tunnel-respirometer (5.25 l) and M is the mass of the
fish (kg, assuming a fish density of 1 kg l−1). First, the significance
of correlations between mean ṀO2

from each test and individual size
(g) was determined using Pearson’s correlation, and Shapiro–Wilk
and Levene’s tests were used to test for normality and
heteroscedasticity of ṀO2

measurements. To meet the parametric
assumptions for the linear correlation between ṀO2

and mass (g),
data were log10 transformed. ṀO2

was then size corrected to the
mean fish size of our sample (29.3 g; range: 18.2–46.6 g) using a
scaling coefficient of 0.76 for bentho-pelagic fish (Killen et al.,
2010). Cost of transport (COT, μmol O2 m−1) was calculated as
COT=ṀO2

×speed−1, which was used to estimate swimming costs
across different conditions.

The rank order repeatability of hypoxia tolerance (HT; DCO)
across 11 weeks and 4 days was statistically determined using
Spearman’s rank order test. The non-parametric test was used to
estimate the repeatability or stability in each individual’s relative
rank position in each HCT to account for changes in HT over time.

Velocity Velocity Velocity~67% Ucrit ~67% Ucrit

10 min

Normoxia (>90% AS) Hypoxia (~20% AS)

45 min 45 min

45 min

10 min

10 cm s–1

HCT1 HCT2

1 2 3

N-LF2 H-LFN-LF

10 cm s–110 cm s–1

H-HFN-HF

Fig. 1. Experimental timeline for the hypoxia challenge and swim tests. The first hypoxia challenge test (HCT1) (1) was performed 4 weeks prior to
the first swim–oxygen consumption test (2), and the second hypoxia challenge test (HCT2) (3) was performed 10 days after the last fish was tested in a
swim–oxygen consumption test. Between the two HCTs (blue boxes), randomly chosen fish were subjected to the swim test. An individual was first acclimated
for 24 h at low flow (10.2 cm s−1) and normoxia. All oxygen consumption periods consisted of three cycles of 10 min of measurement and a 5 min flush. Grey
shaded areas indicate normoxic conditions, orange shaded areas indicate hypoxic conditions. Oxygen consumption (ṀO2) was first measured at low flow
(10.2 cm s−1) in normoxia (normoxia-low flow, N-LF; white box), then the water velocity was increased to 67% critical swimming speed (Ucrit) at a rate of
6 cm s−1 min−1 while reoxygenating the swim tunnel-respirometer. The fish was then held in the high-flow condition for 10 min before ṀO2 was again measured
3 times (normoxia-high flow, N-HF; dark grey box). Water velocity was then decreased to 10.2 cm s−1 at a rate of 6 cm s−1 min−1 and ṀO2

was re-measured
(normoxia-low flow, N-LF2; white box). Finally, the oxygen level in the system was decreased to 20% air saturation (AS) over 1 h and the procedure was repeated
(hypoxia-low flow, H-LF, orange box; hypoxia-high flow, H-HF, red box), except that there was no repeat low-flow swim test under hypoxia. Abbreviations and
colour scheme are consistent across all figures.
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The significance between mean HT over 11 weeks and three
hypoxia exposures was tested with a paired t-test. We used
Pearson’s correlation to estimate the correlation between mean
ṀO2

of tests across the same flow conditions, and Spearman’s rank
order correlation between low- and high-flow tests. The correlation
of three ṀO2

values within each test was assessed with Pearson’s
correlation. Finally, the coefficient of variation [CV=(s.d./
mean)×100] was calculated for all tests (HT and respirometry).
We examined the effects of flow and oxygen levels on individual

ṀO2
and COT using linear mixed effect models (lme4 package;

Bates et al., 2015). The dependent variable was the average of three
ṀO2

measurements for each test. The independent variables were
oxygen level (N, H) and flow (LF, HF) and were tested as
independent predictors with and without interactions between them.
Individual was included as a random effect to account for the
repeated measures design; both slopes and intercepts were allowed
to vary among individuals. Fits of the models were assessed visually
by residual plots and candidate models were selected using Akaike’s
information criterion corrected for small sample size (MuMIn
package; https://CRAN.R-project.org/package=MuMIn); onlymodels
with ΔAICc<2 were considered (Burnham and Anderson, 2002).
Finally, we tested significance levels of fixed effects and their
interaction using an ANOVA with Satterthwaite approximation for
degrees of freedom (lmerTest package; Kuznetsova et al., 2017),
and Tukey’s HSD post hoc analyses (emmeans package; https://
CRAN.R-project.org/package=emmeans). A significance level of
α=0.05 was used for all tests. All methods were approved by
Towson University’s Institutional Animal Care and Use Committee
(IACUC protocol # 1611000152).

RESULTS
Hypoxia tolerance
MeanHT, expressed as cumulative oxygen deficit (DCO), of juvenile
striped bass was 529.88% h (range: 348.53–642.31% h) at the
beginning of the experiment and 657.33% h (445.05–841.81% h) at
the end. The change in hypoxia tolerance (ΔHT) was defined as the
change in each individual’s HT over the 11 weeks between HCT1
and HCT2 with one intervening hypoxia exposure of lesser severity.
The mean (±s.e.m.) ΔHT of each individual was 127.44±24.58% h,
or a 24% increase. The average fish spent about two more hours
under hypoxia in the second HCT before losing equilibrium
(HT expressed in time to LOE: HCT1 range: 4 h 42 min to 8 h
10 min; HCT2 range: 5 h 55 min to 10 h 54 min). Sixteen of the
18 individuals were more hypoxia tolerant at the second HCT and
ΔHT was significantly raised at the second HCT (paired t-test:
t17=−5.18, P<0.001; Fig. 2). The rank order of HTwas significantly
repeatable over 11 weeks (Spearman’s ρ=0.59, P=0.012; Fig. 2),
and it varied substantially between individuals (HCT1 CV=14.14;
HCT2 CV=18.98). Neither HT in either test nor ΔHT significantly
correlated with an individual’s body mass or total length.

ṀO2 and swimming
Oxygen consumption was predictably influenced by flow, and how
much an animal increased its oxygen consumption at high flow
varied according to ambient oxygen level. This was manifested by a
significant interaction term between flow and oxygen level
(ANOVA: oxygen×flow, F1,51=21.22, P<0.001; Fig. 3A,B). In
addition to the significant difference between oxygen consumption
at high and low flow for a given level of oxygenation, post hoc
pairwise comparisons revealed a significantly lower oxygen uptake
under hypoxia than under normoxia at high flow (Fig. 3B). Despite
this reduced oxygen uptake, all but one of the fish was able to

maintain position in the swim tunnel-respirometer for 50 min when
swimming at an estimated 2/3 of Ucrit and an [O2] of 20% air
saturation. ṀO2

was also significantly repeatable between the two
low-flow tests in normoxic water separated by the high-flow
normoxia measurement (Pearson’s r=0.67, P=0.003).

Considerable inter-individual variation in ṀO2
was found for all

respirometry tests (CV: 12.8–20.2). However, an individual’s rank
order of ṀO2

was significantly repeatable between the low-flow and
high-flow trials, but only within a given oxygen level (H-LF versus
H-HF: Spearman’s ρ=0.62, P=0.009; N-LF versus N-HF: ρ=0.58,
P=0.017). This means that individuals with higher ṀO2

in low flow
also had higher ṀO2

in high flow, suggesting a relatively constant
metabolic response to increasing flow across the 17 individuals, but
only when compared within a given level of water oxygenation.
When correlating the ṀO2

across the same flow condition but at
different oxygen levels, there was no significant relationship, which
shows that the rank order of oxygen consumption while swimming
in these fish was shuffled as a result of their differential response to
water with oxygen levels of 20% AS.

Both oxygen level and swimming speed were significant
predictors of the metabolic cost to cover a fixed distance (COT;
ANOVA: flow, F1,51=400.15, P<0.001; oxygen, F1,17.49=22.50,
P<0.001). There was no interaction between oxygen level and
swimming speed in predicting COT. The COTwas lower if fish were
swimming at ∼67% of their estimated Ucrit, but higher under
normoxia than under hypoxia (Fig. 3C,D).

Hypoxia tolerance, ṀO2 and swimming
There was only a weak association between HT and any of the
oxygen consumption measurements made (Fig. 4). The only
significant relationships were between the increase in HT over
11 weeks (ΔHT) and ṀO2

at low swimming speed (ΔHT versus
ṀO2

N-LF: r=−0.50, d.f.=15, N=17, P=0.042; and ΔHT versus
pooled ṀO2

N-LF and H-LF: r=−0.42, d.f.=32, N=34, P=0.013;
Fig. 4C). The relationship between ΔHT and ṀO2

at low swimming
speed under hypoxia approached significance (r=−0.44, P=0.078;
Fig. 4C). No other relationships between any HT measurement and
any respirometry test were significant (Fig. 4A,B).

400

500

600

700

800

HCT1 HCT2

D
C

O
 (%

 h
)

Fig. 2. Hypoxia tolerance of juvenile striped bass measured 11 weeks
apart. Hypoxia tolerance (HT) was measured as the time to loss of equilibrium
during the hypoxia challenge tests (HCT1 and HCT2), and expressed as
cumulative oxygen deficit (DCO, % h; Nelson and Lipkey, 2015). Lines connect
the same individual (N=18). All but two individuals increased their hypoxia
tolerance, and the relationship between HCT1 and HCT2 was significantly
repeatable (Spearman’s ρ=0.59, P=0.012).
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DISCUSSION
Environmental hypoxia will continue to be one of the most common
stressors that fish have to deal with in the near future (Breitburg
et al., 2018; Claireaux and Chabot, 2019; IPCC, 2014). Striped bass
is a commercially and culturally valuable species that is currently
being impacted by encroaching hypoxic zones in the primary
nursery ground, Chesapeake Bay, and elsewhere. As anthropogenic
hypoxic waters expand, hypoxia tolerance has become a frequent
metric used to assess the ability of fishes to persist in a particular
environment (e.g. Claireaux and Chabot, 2019; Joyce et al., 2016;
Mandic et al., 2008; Rees andMatute, 2018; Roze et al., 2013). Yet,
for active, pelagic fishes like striped bass, performance under
hypoxia tolerance may be a more relevant metric (e.g. Kraskura and
Nelson, 2018). HT also appears to be a highly plastic and context-
dependent physiological trait in fishes and it varies substantially
among individuals of the same size, age and species (Nelson et al.,
2019; Nelson and Lipkey, 2015; Killen et al., 2016). Our previous
work on striped bass determined that hypoxia is significantly
repeatable among individuals, but increases with repetitive
laboratory exposure to hypoxia (Nelson et al., 2019); we have
also found that HT varies between individuals measured at rest
versus that same animal measured while swimming (Nelson and
Lipkey, 2015). The physiological trade-offs that underlie
interindividual variability in hypoxia tolerance at different activity
levels in fish and how they relate to other oxygen-dependent

processes are unknown. Before embarking on studies of the
mechanistic bases of differential HT and performance under
hypoxia, it is necessary to first gauge the variability, repeatability
and inter-relatedness of these measures themselves. Below, we
address several measures of oxygen-related performance in the
same individual, separately, and then link them.

Hypoxia tolerance
Although the active aerobic lifestyle of striped bass would suggest
intolerance to hypoxia (Dixon et al., 2017), our work suggests a
relatively high tolerance to hypoxia when compared with other
active, pelagic species. For example, Atlantic cod, Gadus morhua,
juveniles have 100% mortality at 10% AS (Plante et al., 1998) and
Atlantic menhaden, Brevoortia tyrannus, had a 50% mortality rate
at 10% AS (Burton et al., 2011). Juveniles of the co-familiar
European sea bass, Dicentrarchus labrax, had similar HT to striped
bass, losing equilibrium at AS between 9% and 3% when tested
using techniques similar to those in this study (LOE; Claireaux
et al., 2013; Zhang et al., 2017). As juvenile European sea bass and
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measured twice (HT1 and HT2, 11 weeks later) as time to loss of equilibrium
and is expressed as cumulative oxygen deficit (DCO). (A–C) HT measured at
the first (A) and at the second (B) hypoxia challenge test as a function of
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P<0.0001, pairwise post hoc comparisons indicated a significant difference in
ṀO2 across all levels (**P<0.01, ***P<0.001), except for ṀO2 between N-LF and
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striped bass both occupy estuaries that become seasonally hypoxic,
their historic exposure to hypoxia possibly accounts for their
exceptional tolerance to low oxygen when compared with other
pelagic, marine fishes (Mandic and Regan, 2018).
HT varied substantially amongst this cohort of wild juvenile

striped bass captured at the same time and place. Despite this
variation and increase in HT with repetitive exposure (see below),
the rank order of HT was repeatable when comparing HCT1 with
HCT2 (11 weeks). The average CV of 16.6 was greater than that
reported for farm-raised rainbow trout, Oncorhynchus mykiss (Roze
et al., 2013), but lower than that of two other wild-caught striped
bass cohorts (CV=34.3: Nelson and Lipkey, 2015; and CV=65.3:
Nelson et al., 2019). Previously, significant repeatability of HT was
found in D. labrax (Claireaux et al., 2013; Joyce et al., 2016), Gulf
killifish, Fundulus grandis (Rees and Matute, 2018), and the
Atlantic croaker, Micropogonias undulates (Pang et al., 2015).
However, introduction of a potentially synergistic physiological
challenge (e.g. oil exposure) has been shown to disrupt the
repeatability of HT in D. labrax (Zhang et al., 2017). Repeatable
inter-individual variance is increasingly recognized as a valuable
trait in ecological and evolutionary physiology (Ballew et al., 2017;
Killen et al., 2016; Norin and Malte, 2012; Rees and Matute, 2018)
and may be considered a harbinger of heritability (Dohm, 2002;
Killen et al., 2016). As we have here and elsewhere (Nelson and
Lipkey, 2015; Nelson et al., 2019) measured substantial variability
in HT that is repeatable across multiple hypoxia exposures, it is
likely that juvenile striped bass are undergoing in situ acclimation
when exposed to hypoxia in the wild. This can improve their
chances of success with subsequent hypoxia exposures (but see
Gamperl, 2004; Overgaard et al., 2004), which occur in high
frequency and severity in summertime in Chesapeake Bay (Testa
et al., 2017).
In the current study, HT in juvenile striped bass increased an

average of 24% in a third hypoxia exposure after previous exposures
to 10% and 20% AS. Our lab has previously reported a 600%
increase in HT resulting from ∼4 exposures to 10% AS (Nelson
et al., 2019). During acute hypoxia exposure, fish can engage in a
variety of responses to defend their aerobic capacity (Mandic and
Regan, 2018). These responses can be (i) behavioural: avoidance,
agitation, surface respiration (Cook et al., 2013; Damsgård et al.,
2019; Dixon et al., 2017; Domenici et al., 2000); (ii) physiological:
increased ventilation rate, increased heart rate, lower cardiac output
(Petersen and Gamperl, 2010) or release of red blood cells (Wang
et al., 2017); (iii) biochemical: increased activity of metabolic
enzymes (Borowiec et al., 2018; Crans et al., 2015; Omlin and
Weber, 2010); or (iv) molecular: changes in gene expression and
regulation (Hochachka et al., 1996; Wu, 2002). These responses
vary with the length and severity of hypoxia exposure (Mandic and
Regan, 2018). Changes to any or all of these could be responsible
for the observed increase in HT here. While not measured in these
fish, we did see a strong correlation between HT and blood oxygen
carrying capacity of striped bass in a previous study (Nelson et al.,
2019); other studies have also implicated increases in blood oxygen
carrying capacity (Petersen and Gamperl, 2011; Val et al., 1990).
In several fish species, increased gill surface area appears to be one
of the key plastic traits that can improve HT (Fu et al., 2011; Nilsson,
2007; Timmerman and Chapman, 2003). Improved tolerance to
hypoxia also appears to be associated with increased anaerobic
enzyme capacity in the heart (Borowiec et al., 2016; Cook et al.,
2013; Crocker et al., 2013), the brain (Mandic et al., 2013), muscle
(Davies et al., 2011) and type I (red) skeletal muscle (Cook et al.,
2013). Across these studies, the global mechanism behind this

relatively uniform increase in HT with intermittent hypoxia
exposure is still to be resolved in fish, but these are undoubtedly
polygenic traits (Zhou and Haddad, 2013), the expression of which
is modified by exposure to low oxygen levels. A clue from the
present study is that the increase in each individual’s hypoxia
tolerance (ΔHT) was significantly and negatively correlated with
ṀO2

when swimming at low flow. This implies that in wild-caught
striped bass, those that swimmore efficiently (lower ṀO2

at the same
swimming speed) or are less stressed under laboratory conditions
are able to allocate greater resources towards a plastic response to
hypoxia exposure.

Swimming metabolism across flow regimes
Comparisons of our swimming ṀO2

measurements made under
normoxic conditions with literature values suggest that our fish were
relatively relaxed and thus our conclusions are robust. The mean
ṀO2

of our fish swimming at 10 cm s−1 was 1.75 µmol O2 min−1

which compares favourably with a standard ṀO2
of 1.06 µmol

O2 min−1 and a routine ṀO2
of 2.03 µmol O2 min−1 reported by

Brougher et al. (2005), and ∼4.4 µmol O2 min−1 in similar-sized
striped bass swimming at 10 cm s−1 and 20°C but uncorrected for
microbial ṀO2

(Kruger and Brocksen, 1978). Swimming oxygen
consumption was significantly repeatable on a daily basis across
high- and low-flow swimming speeds, suggesting that all fish
responded in a similar way metabolically to changes in flow.
Measurements of fish oxygen consumption date to the early 19th
century (Nelson, 2016), but repeatability is still rarely reported, and
appears to be context dependent in fish (Killen et al., 2016). Reidy
et al. (2000) reported significant long-term repeatability of ṀO2

in
wild G. morhua, but only when swimming fast, not at rest or when
swimming at lower speeds. Repeatability has also been shown to
decline over time (Auer et al., 2018a; Norin and Malte, 2011). It is
likely that laboratory residence, coupled with a variable metabolic
response by the animals to human presence, may be blunting
some measures of repeatability. As we found repeatable ṀO2

in fish
only within a single day, it may be fruitful to measure long-term
repeatability of swimming metabolism, and compare that with
individual HT.

We found a high inter-individual variability for ṀO2
(CV: 13–20),

which is not unusual for fish (Burton et al., 2011; Metcalfe et al.,
2016; Norin and Gamperl, 2018; Norin andMalte, 2011). Metabolic
rate is influenced by a multitude of biotic and abiotic environmental
factors, physical and physiological activity, and lifestyle, and is both
species and individual specific. Factors that have been found to
influence intraspecific variation in ṀO2

include, but are not limited
to, shoaling (Domenici et al., 2017; Nadler et al., 2016), competition
for food and intake (Auer et al., 2015; Norin and Malte, 2011), and
thermal history (Auer et al., 2018b; Eliason and Farrell, 2016;
Eliason et al., 2011; Killen et al., 2013). Substantial variation in
ṀO2

has been found even in clonal fishes (Plaut and Gordon, 1994)
and full-sibs raised in identical environments (Burton et al., 2011),
suggesting that genetics and environment both contribute to creating
the large intraspecific variation in ṀO2

. Despite this variation in our
fish, the strong repeatability signifies that the inter-individual
variance in ṀO2

under identical conditions significantly exceeds the
variance among replicate trials of an individual over time.

Swimming metabolism across oxygen regimes
ṀO2

in swimming striped bass was not repeatable across different
oxygen levels, contrary to Maciak and Konarzewski (2010). This
finding, coupled with the repeatable ṀO2

across swimming speeds
discussed above, indicates that individual striped bass do not
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respond uniformly to the combined physiological challenges of
swimming and hypoxia. Similarly, Nelson and Lipkey (2015) found
juvenile striped bass to have different HT ranks depending upon
whether they were tested while swimming or not. Hypoxia can
clearly alter repeatability and inter-individual variability of
metabolic performance in fish (Killen et al., 2016). Here, the
lowest and highest variation in ṀO2

was in fish swimming under
hypoxia against high flow and low flow, respectively. Similarly,
Norin et al. (2016) reported lower variation in maximum
ṀO2

compared with standard ṀO2
in barramundi, Lates calcarifer,

when both were measured under hypoxia. Two other studies, in
spined loach, Cobitis taenia (Maciak and Konarzewski, 2010), and
Gulf killifish, F. grandis (Virani and Rees, 2000), report reduced
variation and repeatability of ṀO2

when measured under hypoxic
conditions. Repeatability of ṀO2

can also decrease across thermal
(Auer et al., 2018a) and food availability regimens (Auer et al.,
2015; Norin and Malte, 2011). The results reported here are a likely
consequence of metabolic constraints being imposed by hypoxia
and the simultaneous demands of exercise and hypoxia. One
possible mechanism is that blood is generally diverted from the
gastrointestinal tract to swimming muscles of fish in exercise
(Thorarensen and Farrell, 2006) and away from the gut during
hypoxia (Axelsson and Fritsche, 1991; Axelsson et al., 2002),
limiting the perfused tissues that are contributing to oxygen
consumption.

COT
The oxygen consumed in covering a fixed distance was lower if fish
were swimming at approximately 67% of their estimated Ucrit. The
decline in COT going from swimming at 10 cm s−1 (∼23% Ucrit) to
swimming at approximately 29 cm s−1 (∼67% Ucrit) suggests that
our selected high-flow test was closer to the fish’s optimal
swimming speed (Uopt) (Claireaux, 2006; Webb, 1998). Despite
that we measure ṀO2

only at two swimming speeds, the results
support the commonly found J- orU-shaped COT curves in fish (Di
Santo et al., 2017; Webb, 1998). The co-familiar D. labrax had a
similar minimum COT closer to 67% of theirUcrit than to 10 cm s−1

(Claireaux, 2006). All fish swam steadily and did not transition to
burst-and-coast swimming, suggesting that these fish relied mostly
on aerobic respiration at the selected speeds. Consistent and
repeatable ṀO2

in normoxic low-flow water measured before and
immediately after the high-flow treatment shows that no significant
oxygen debt accumulated at the high-flow treatment under
normoxia, and is consistent with the animals being unperturbed
by the high-flow treatment.
The significantly lower COT when the fish were swimming at

both speeds under hypoxia most parsimoniously arose from them
exploiting anaerobic metabolic pathways but could also have arisen
from reduced metabolic activity of tissues not involved with
swimming and the aforementioned re-distribution of blood away
from those tissues. Hypoxia exposure itself can initiate anaerobic
metabolism producing lactate in some fish (Weber et al., 2016),
supporting the anaerobic metabolism idea. Whether our juvenile
striped bass were approaching exhaustion from relying on anaerobic
respiration during the H-HF swim was not apparent but is likely
(Domenici et al., 2013). For example, Ucrit can be significantly
reduced when fish are swum under similar or even milder levels of
hypoxia to those used here; an approximate 30% reduction in Ucrit

was reported for Atlantic cod, G. morhua (∼40% AS: Dutil et al.,
2007; Petersen and Gamperl, 2010), and a 20% reduction for
rainbow trout, O. mykiss (∼25% AS: Bushnell et al., 1984), black
carp, Mylopharyngodon piceus (30% AS: Pang et al., 2015), coho

salmon, Oncorhynchus kisutch, and largemouth bass,M. salmoides
(12–27% AS: Dahlberg et al., 1968). The lactate produced can be
oxidized by red muscle (or other fully aerobic tissues like heart and
brain) to maintain energy balance and swimming performancewhen
insufficient oxygen is available to keep all tissues aerobic (Omlin
and Weber, 2010; Weber, 1991; Weber et al., 2016). Future studies
on striped bass should incorporate the measurement of post-exercise
oxygen consumption (Marras et al., 2010; Zhang et al., 2018),
muscle and blood biochemistry (Zhang et al., 2018), and regional
blood flow during swimming under hypoxic conditions to better
understand how striped bass partition metabolism to be able to
perform so well under hypoxia.

Relationships between HT and swimming respiration
HTwas not related to oxygen consumption rate under any condition
tested. Excluding the possibility that there is no relationship
between HT and ṀO2

, there are several alternatives: (1) the flow
levels we chose did not sufficiently challenge the aerobic capacities
of these striped bass to an extent where trade-offs could be discerned
(e.g. in a centrarchid, fish with a higher Ucrit have been shown to
have lower HT; Crans et al., 2015); (2) selecting speed based on size
alone instead of each individual’s empirically determined Ucrit may
have obscured the results; and (3) metabolism during recovery from
exercise, which was not measured in this study, may be the key
metabolism under selection (Marras et al., 2010), and more relatable
to an individual’s HT. However, if this result holds up to further
experimental scrutiny, it suggests that being hypoxia tolerant does
not necessarily diminish an individual’s capacity to consume
oxygen while swimming.

Multiple studies have drawn attention to potential trade-offs or
complementarity between HT and aerobic swimming ability in fish
(Zhou et al., 2019; Crans et al., 2015; Fu et al., 2011; Fu et al.,
2014); however, there is no consensus on how these trade-off within
individuals or across species (Zhou et al., 2019; Crans et al., 2015;
Fu et al., 2011; Fu et al., 2014; Nilsson, 2007). Among the traits
suspected to be critical to both HT and swimming capacity are the
ability to exchange respiratory gases at the gill, ṀO2

transport to
tissues and efficiency of ATP generation and allocation (Crans et al.,
2015; Hochachka et al., 1996; Randall, 1982). In contrast, some
traits may favour only one of these physiological characteristics. For
example, HT is often associated with a high Hb–O2 affinity (low
P50; Mandic et al., 2008), but that could limit O2 unloading at the
working muscle thereby compromising aerobic swimming.
Similarly, increasing blood [Hb] and haematocrit can promote HT
(Nelson et al., 2019) but the consequential increase in blood
viscosity may limit cardiac performance at high exercise levels
(Wells and Weber, 1991).

Metabolic rate can be an important determinant of an individual’s
response to hypoxia (Killen et al., 2012), with high metabolic rate
animals generally faring worse (Zambonino-Infante et al., 2017).
However, having a high aerobic metabolic rate can also facilitate
recovery from the type of exhaustive exercise that taxes anaerobic
capacity (Marras et al., 2010), suggesting that these animals might
have a selective advantage if they are able to escape encroaching
hypoxic waters. Here, although ṀO2

was somewhat predictive of an
animal’s capacity to change HT, it was not directly correlated to HT.
The rate of oxygen consumption was also poorly predictive of HT in
the co-familiar European sea bass yet was significantly associated
with survival in a simulated natural estuary that experiences hypoxia
(J.A.N., unpublished observation).

In contrast to hypoxia tolerance per se, the increase of each
individual’s hypoxia tolerance (ΔHT) with three hypoxia exposures
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was significantly and negatively correlated with ṀO2
at low flow.

One explanation for this result may be that animals with low routine
ṀO2

have more resources (e.g. aerobic scope) to allocate to the
plastic response to hypoxia (i.e. new gill tissue, erythrocyte
synthesis, etc.). Alternatively, those fish with the lowest routine
ṀO2

may have been the most habituated to the laboratory and been
de-sensitized to stress (Reid et al., 1994), and so the energy not
invested in stress responses could go into physiological plasticity. In
either case, the plastic response to hypoxia is bound to have
significant physiological trade-offs, otherwise it would be the
default trait value measurable under any conditions; for instance,
increased gill surface area would substantially increase the cost of
osmoregulation and acid–base balance (Sardella and Brauner,
2007). Future research should focus on the HT of swimming striped
bass and whether the plastic responses induced by hypoxia exposure
have fitness consequences for this iconic fish of the North American
east coast.
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