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Chicken colour discrimination depends on background colour
Peter Olsson1,‡, Robin D. Johnsson1,*, James J. Foster1, John D. Kirwan1, Olle Lind2 and Almut Kelber1

ABSTRACT
How well can a bird discriminate between two red berries on a green
background? The absolute threshold of colour discrimination is set by
photoreceptor noise, but animals do not perform at this threshold;
their performance can depend on additional factors. In humans and
zebra finches, discrimination thresholds for colour stimuli depend on
background colour, and thus the adaptive state of the visual system.
We have tested how well chickens can discriminate shades of orange
or green presented on orange or green backgrounds. Chickens
discriminated slightly smaller colour differences between two stimuli
presented on a similarly coloured background, compared with a
background of very different colour. The slope of the psychometric
function was steeper when stimulus and background colours were
similar but shallower when they differed markedly, indicating that
background colour affects the certainty with which the animals
discriminate the colours. The effect we find for chickens is smaller
than that shown for zebra finches. We modelled the response to
stimuli using Bayesian and maximum likelihood estimation and
implemented the psychometric function to estimate the effect size.
We found that the result is independent of the psychophysical method
used to evaluate the effect of experimental conditions on choice
performance.

KEY WORDS: Adaptation, Bird vision, Colour vision, Psychometric
function, Visual ecology

INTRODUCTION
For many animals, including primates, birds and insects, colour is
an important cue to identify, recognise and evaluate objects, such as
mates (e.g. birds: Hill, 1991; Hunt et al., 1999) or food (e.g.
primates: Osorio and Vorobyev, 1996; bees: Hempel de Ibarra et al.,
2001, 2002; birds: Schaefer et al., 2006). Accordingly, colour vision
and its relationship to colouration has been investigated extensively
(e.g. Kemp et al., 2015; Renoult et al., 2017; Lind et al., 2017;
Cuthill et al., 2017), and ecological studies have frequently used
colour vision models (e.g. Vorobyev and Osorio, 1998) to predict
discrimination thresholds.
Behavioural studies have tested how well animals can use colour

to detect objects against a background (e.g. bees: Hempel de Ibarra
et al., 2001; crows: Schaefer et al., 2006) and to discriminate
between objects (e.g. bees: Hempel de Ibarra et al., 2002; chickens:
Olsson et al., 2015). Colour vision models have also been used to

understand both the discrimination of an object colour from a
background colour (e.g. bees: Hempel de Ibarra et al., 2001;
primates: Sumner and Mollon, 2000) and discrimination between
object colours (e.g. bees: Hempel de Ibarra et al., 2002; chickens:
Olsson et al., 2015). The receptor noise limited (RNL) model of
colour discrimination builds on the assumption that discrimination
thresholds are ultimately limited by photoreceptor noise (Vorobyev
and Osorio, 1998) and has been shown to accurately predict
absolute colour discrimination thresholds of many species under
laboratory conditions (see Renoult et al., 2017; Olsson et al., 2018).
The RNL model has also been widely applied to predict colour
discrimination in natural contexts, but under these conditions,
additional parameters may influence discrimination performance
(Olsson et al., 2018). One such parameter is the adaptive state of the
visual system, which depends on the colour and intensity of the
illumination and the reflectance of the background.

Changes in colour discrimination thresholds caused by changes
in illumination colour in bright light can be predicted satisfactorily
by the RNL model (e.g. Olsson et al., 2016; Olsson and Kelber,
2017), whereas additional assumptions on photon shot noise, dark
noise and spatial pooling have to be considered to predict the
performance of the visual system in dim light (e.g. Olsson et al.,
2015, 2017).

However, studies on the discrimination of object colours have
rarely considered the colour of the adaptive background, often
chosen as neutral grey. In natural visual scenes, objects, such as
conspecifics and food items, are seen against differently coloured
backgrounds, such as green vegetation, the blue sky or sandy
ground. Moreover, some animals position themselves against
specific backgrounds and under specific illumination during
courtship displays, indicating that background colour may
influence the perception of plumage presented by a prospective
mate (e.g. Endler, 1993; Endler and Mielke, 2005).

For humans, the colour of the background, and thus the adaptive
state of the visual system, affects colour discrimination (Krauskopf
and Gegenfurtner, 1992; Smith et al., 2000). Humans are better at
discriminating red colours presented against a reddish background
than against a greenish background, and vice versa. Lind (2016)
found a similar effect of background colour on colour
discrimination in a bird, the zebra finch (Taeniopygia guttata).

This study aimed to determine the effect of the background on
colour discrimination in a widely used bird model system, the
chicken (Gallus gallus). We trained chickens to discriminate green
or orange stimulus colours on green or orange backgrounds and
compared their discrimination performance. We applied different
psychophysical methods to describe both the discrimination
threshold and the slope of psychometric curves.

MATERIALS AND METHODS
Animals
Thirty-two Lohmann white chickens (Gallus gallus L.) of both
sexes (Gimranäs AB, Herrljunga, Sweden) were used. We hatched
eggs in a commercial incubator (Covatutto 24, Högberga AB,Received 23 June 2019; Accepted 19 October 2020

1Department of Biology, Lund University, 223 62 Lund, Sweden. 2Department of
Philosophy, Lund University, 223 62 Lund, Sweden.
*Present address: Department of Ecology, Environment and Evolution, La Trobe
University, Melbourne, VIC 3086, Australia.

‡Author for correspondence (polsn84@gmail.com)

P.O., 0000-0001-9026-3274; R.D.J., 0000-0002-6526-677X; J.J.F., 0000-0002-
4444-2375; J.D.K., 0000-0001-5537-3574; O.L., 0000-0002-5490-4705; A.K.,
0000-0003-3937-2808

1

© 2020. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2020) 223, jeb209429. doi:10.1242/jeb.209429

Jo
u
rn
al

o
f
Ex

p
er
im

en
ta
lB

io
lo
g
y

mailto:polsn84@gmail.com
http://orcid.org/0000-0001-9026-3274
http://orcid.org/0000-0002-6526-677X
http://orcid.org/0000-0002-4444-2375
http://orcid.org/0000-0002-4444-2375
http://orcid.org/0000-0001-5537-3574
http://orcid.org/0000-0002-5490-4705
http://orcid.org/0000-0003-3937-2808


Matfors, Sweden) and housed the chickens following regulations
(permit no. M111-14, Swedish Board of Agriculture) in a 1×1 m
wooden box with 1.5 m high walls, a mesh on top, a perch and water
available ad libitum. Food (chick crumbs, Fågel Start, Svenska
Foder AB, Staffanstorp, Sweden) was available during experimental
sessions and after the last experimental session each day. On days
without sessions, food was available ad libitum. The experiment
ended when the chickens were between 4 and 5 weeks old.
We raised, trained and tested four batches of eight chickens each.

Animals of two batches were trained to discriminate colours
presented on an orange background, whereas the other two batches
were trained with a green background. On the third day after
hatching, four animals were randomly assigned to training with

green stimuli, and four animals to training with orange stimuli. This
resulted in four experimental groups with eight animals each: group
1 discriminated green stimulus colours on a green background,
group 2 discriminated orange stimulus colours on a green
background, group 3 discriminated green stimulus colours on an
orange background and group 4 discriminated orange stimulus
colours on an orange background (Table 1).

Experimental setup and stimuli
We conducted all experiments in a wooden arena (0.7×0.4 m) with
matte grey walls and floor, illuminated from above by four
fluorescent tubes (Biolux 18 W, Osram, Munich, Germany; for
the spectrum, see Fig. 1A). We presented stimuli on a uniformly
coloured orange or green background that covered part of the floor
(25 cm wide×15 cm deep) and the wall (25 cm wide×15 cm high)
(Fig. S1). At 30 cm distance (the starting condition), the background
subtended 34 deg horizontally and 26 deg vertically. As stimuli, we
used conical food containers, folded from paper uniformly
printed with green or orange colours, similar to those in previous
studies with chickens (Olsson and Kelber, 2017; Olsson et al.,
2015, 2016, 2017; Osorio et al., 1999). All colours were created
in Adobe Illustrator, Creative Suite package version 5, using
CMYK colour coding and printed with a Canon Pro 9000 MkII.

Table 1. Batches and experimental groups of chickens used in the
experiments

Batch Background colour
Rewarded stimulus
colour and group Sex ratios (F:M)

a
b

green Group 1
G+

Group 2
O+

Group 1 (5:3)
Group 2 (5:3)

c
d

orange Group 3
G+

Group 4
O+

Group 3 (4:4)
Group 4 (4:4)
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Fig. 1. Colours used in the study. (A) The
radiance of a white standard illuminated by
the experimental illumination. (B) The
reflectance of the two rewarded colour
stimuli. (C) Chromatic loci of all colour stimuli
in the orange stimulus series and both
backgrounds. (D) Chromatic loci of all colour
stimuli in the green stimulus series and both
backgrounds. An enlarged version of all
stimuli and backgrounds for easier
visualisation is located to the right. The
letters at each corner (VS, S, M, L) refer the
different cone types and the letters within
the space (O, G) refer to individual stimuli.
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We used one rewarded (O+) and six unrewarded orange stimuli
(O1–6), as well as one rewarded (G+) and six unrewarded
green stimuli (G1–6). The achromatic contrasts between all
unrewarded stimulus colours and the rewarded stimulus colour
were below the achromatic discrimination threshold of chickens
(ca. 7%; see Jarvis et al., 2009; Gover et al., 2009). Spectra of
backgrounds and colour loci in bird colour space are given in
Fig. 1B–D. All spectra are given in Table S3.

Visual modelling
The colour differences between stimuli, and between stimuli
and backgrounds (Table 2), were calculated using the RNL
model (Vorobyev and Osorio, 1998) with units of just
noticeable difference (JND), and the colour discrimination
threshold set as 1 JND. We have previously calibrated the noise
assumptions of this model to the behavioural colour
discrimination threshold of chickens (Olsson et al., 2015). The
calculations are based on these established methods (Vorobyev
et al., 1998; Olsson et al., 2015).
Colour differences, ΔS, were calculated as:

DS2¼ðv1v2Þ2ðDf4�Df3Þ2þðv1v3Þ2ðDf4�Df2Þ2þðv1v4Þ2ðDf3�Df2Þ2þ
ðv2v3Þ2ðDf4�Df1Þ2þðv2v4Þ2ðDf3�Df1Þ2þðv3v4Þ2ðDf2�Df1Þ2

ðv1v2v3Þ2þðv1v2v4Þ2þðv1v3v4Þ2þðv2v3v4Þ2
;

ð1Þ
where ω refers to noise in the visual channel of cone type i (VS:S:
M:L), set to 0.06 ωL, and is calculated as:

vi¼ sffiffiffiffiffi
hi

p ; ð2Þ

where σ is the coefficient of variation of noise and ηi is the relative
abundance of cone type i in the retina. In chickens, the relative
abundance of VS:S:M:L cone types has been estimated as 1:1.5:2.5:2
(Kram et al., 2010). The contrast, Δf, in receptor channel i, is
calculated as:

Dfi¼ln
Qi;stimulus1

Qi;stimulus2

� �
; ð3Þ

where Q refers to the quantum catch of the receptor type i and is
calculated as:

Qi¼
ð700
300

RiðlÞSðlÞdl: ð4Þ

Here, R refers to the spectral sensitivity of cone type i and S
refers to the radiance of the stimulus. The radiance of the stimuli was
measured with a spectroradiometer (RSP 700, International Light,
Peabody, MA, USA) under the experimental illumination.

Colour loci as represented in Fig. 1C,D were calculated using the
functions given in Kelber et al. (2003), for the colour tetrahedron of
tetrachromats.

The achromatic differences between colours were calculated as
Michelson’s contrast (C ) for the double cone, which is assumed to
mediate the achromatic vision of birds in bright light (Osorio and
Vorobyev, 2005; Lind et al., 2013), as:

C ¼ Qi;stimulus1 � Qi;stimulus2

Qi;stimulus1 þ Qi;stimulus2
: ð5Þ

Training and testing procedure
Training of the chickens started on the third day after hatching.
Chickens were assigned to one of four groups (see Table 1) and
trained in two sessions each day, one before and one following
noon, with at least 1 h between the two sessions. On the first training
day, four chickens were trained together, with several food
containers of the rewarded stimulus colour (orange O+ or green
G+) at the same time, each filled with several chicken crumbs and
presented on the green or orange background, depending on the
group. On the second day, chickens were trained in pairs with only
one filled food container of the rewarded stimulus colour available
at any time. On the third day, each pair of chickens was initially
placed behind a grey cardboard wall and given access to the food
container only after the wall was removed. On the fourth day, each
chicken was trained individually, as per day 3. A second chicken
was placed in an adjacent cage separated from the experimental cage
by mesh, allowing for visual and audio contact with the
experimental chicken to reduce stress. On the fifth day, an empty
food container of a distinctly different unrewarded stimulus colour
(either O6 or G6) was introduced. From this day on, each session
consisted of 20 trials. Testing started when a chicken had reached
the learning criterion of 0.75 correct choices in two consecutive
sessions.

In tests, we presented chickens with one filled food container of
the rewarded stimulus colour (G+ or O+) and one food container of
an unrewarded stimulus colour on a green background (groups 1 and
2) or an orange background (groups 3 and 4; Table 2). If the chicken
pecked the rewarded container, it was allowed to feed on any spilled
food, and the unrewarded container was removed. By rewarding the
chickens continuously for correct choices, we ensured high
motivation throughout the experiment. If the chicken pecked the
unrewarded container, both containers were removed. Testing
started with the largest colour difference, O+ against O6 and G+
against G6, and continued with smaller colour differences between
stimuli, ending with O1 or G1. We presented each colour difference
in four sessions of 20 trials each, two training sessions, and two test
sessions, during which we analysed the choices (N=40 choices for
each chicken and stimulus pair). A proportion of 0.65 correct
choices differs significantly from chance in binomial tests with
α=0.05 (N=40, one-tailed binomial test). Chickens that failed to
reach 0.65 correct choices with a specific unrewarded stimulus

Table 2. Colour distances between stimuli and backgrounds, and
between the unrewarded stimuli and the rewarded stimulus

Colour difference to
green background
(JND)

Colour difference
to orange background
(JND)

Distance to
G+ and O+ (JND)

G+ 1.0 13.9 0
G1 1.2 14.0 0.3
G2 1.7 14.1 0.6
G3 1.7 14.3 1.0
G4 2.5 14.8 1.8
G5 3.3 15.2 2.5
G6 5.6 16.8 5.0
O+ 12.5 1.3 0
O1 12.1 1.7 0.3
O2 12.1 1.7 0.7
O3 11.8 2.0 1
O4 11.1 2.7 1.6
O5 10.4 3.5 2.4
O6 8.6 5.4 4.3

JND, just noticeable difference.
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colour were excluded from subsequent tests with unrewarded
stimulus colours that were more similar to the rewarded stimulus
colour; thus, a chicken made a maximum of 240 choices, if tested
with all six unrewarded stimuli.

Data analysis
We analysed data from each bird separately by calculating the
correct choice frequency for the last 40 choices with each stimulus
pair (one rewarded and one unrewarded stimulus colour) as a
function of the colour difference between the two colours. We used
three different methods to analyse the results: (i) generalised linear
modelling using maximum likelihood estimation (MLE),
incorporating the psychometric function (psychometric MLE),
(ii) generalised linear mixed modelling using Bayesian estimation,
incorporating the psychometric function (psychometric Bayesian),
and (iii) generalised linear mixed modelling using MLE, excluding
the psychometric function (non-psychometric MLE). The last two
methods apply mixed models by estimating random as well as fixed
effects. Discrimination thresholds were estimated from the fitted
psychometric functions. We used two thresholds: (i) the proportion
of correct choices that differs significantly from chance according to
binomial statistics (0.65), to compare with previous studies; and
(ii) the proportion of correct choices at the inflection point of the
psychometric function.
For the psychometric MLE method (method i), the dependent

variable was choice performance, the proportion of correct choices,

and the independent variables were colour difference (between
rewarded and unrewarded stimuli), background colour, sex, batch,
and individual identity. We fitted models of the psychometric
functions using the glm.WH function in the psyphy package (https://
cran.r-project.org/web/packages/psyphy/) in R (www.r-project.
org). These used MLE to fit a logistic regression model, via the
probit link, for two alternative forced choice (2AFC) experiments;
an upper asymptote was estimated and a lower asymptote at 0.5 was
specified. For model selection, for both methods i (psychometric
MLE) and iii (non-psychometric MLE), we used likelihood ratio
tests on nested models via the anova command in R, starting from a
model including a 3-way interaction between colour difference,
background colour and sex with additional fixed effects of batch and
individual identity, and looked for significant differences in deviance
when dropping variables and their higher order interactions. We
preferred models with significantly lower deviance and lower AIC.
Additionally, models with reduced complexity that did not
significantly reduce deviance were also preferred (Tables 3–5;
Tables S1 and S2). Whenever a variable or an interaction was
removed in this way, we updated the model so that further
comparisons were always between the current, updated, model and
the proposed model with further variable or interaction reduction.
In essence, we performed a backwards model selection procedure.
When we arrived at a final model, with only variables that were
preferred to remain in the model, we successively added each
dropped variable and interaction, individually, back to new

Table 3. Model selection results for the psychometric MLE method (method i) comparing models explaining the performance of chickens
discriminating green colours

Term(s) AIC ΔDeviance Δd.f. P-value Rank status

a. Comparison with a null model
Discrimination performance∼
Colour.difference:background colour: sex
+individual identity
+batch

442.35 Deficient
2×Ind
Batch B–D
Background:sex

Discrimination performance∼1 1090.69 686.34 19 <2.2e−16 Full

b. Model selection
Colour.difference:background colour: sex 442.72 2.37 1 0.123 Deficient

2×Ind
Background:sex

Background colour:sex 442.72 0 0 Deficient
2×Ind
Batch B–D

Background colour:colour difference 441.59 0.86 1 0.354 Deficient
2×Ind
Batch B–D

Colour.difference:sex 439.73 0.14 1 0.71 Deficient
2×Ind
Batch B–D

Batch 439.73 0 0 0 Deficient
2×Ind

Sex 439.73 0 0 0 Deficient
1×Ind

Background colour 439.73 0 0 0 Full
Individual identity (retained) 515.87 106.14 15 8.84e−16 Full
Colour.difference (retained) 1029.19 712.55 1 <2.2e−16 Full

c. Final model
Discrimination performance∼Colour.difference
+individual identity

439.73

The psychometric MLE method (method i), compares models explaining the performance of chickens discriminating green colours. (a) Likelihood ratio test
comparing the full model with a null model. (b) Model selection, using likelihood ratio tests to compare models with and without each of the fixed effects terms
specified. (c) Formula for the model chosen, including only the terms that were retained. Deviance and d.f. refer to residual deviance and residual degrees of
freedom. Terms that were retained in the final model are indicated in bold. Rank status reports whether the model was rank deficient or not and specifies term(s)
that were not estimated. Note that in some cases the removal of a variable did not change degrees of freedom, which are related to changes in rank status.
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proposed models and compared those with the final model. The
changes in deviance reported in Tables 3–5 are from the final
comparison. However, for the psychometric MLE method, the
models where the interactions colour difference:background, and
the 3-way interaction in the green colour series (Table 3) and the
3-way interaction in the orange colour series (Table 4) were added
back in could not be fitted. The reported deviance change for those
comparisons are from the backwards selection procedure. To
estimate thresholds, we fitted the final models to each group and
used the predict function to generate psychometric functions along
with confidence intervals and used the approx command to find
the threshold colour difference.
We calculated the slope of each psychometric function at threshold

(0.65) by fitting a linear function to x and y values just above and
below threshold (by a proportion of 0.01) and looked for significant
interaction effects, between stimulus colour difference (continuous
variable) and background colour (categorical variable), indicating
differences in the slopes of the psychometric functions.
It should be noted that psychometric MLE models including

batch and individual identity as random effects did not converge on
appropriate parameter values (possibly because of the large number
of higher order interactions). We therefore chose to model batch and
individual identity as fixed effects (i.e. categorical variables with
intercepts and slope coefficients) rather than random effects (i.e.
correlated group-level intercepts and slopes scaled by a population-
level standard deviation). For categorical variables with many
levels, these two methods may yield similar results. One crucial
difference is that some predictive power could be gained from
assigning random effects to variables for which it was impossible to
reasonably observe all possible levels in a single experiment, such

as individual identity and batch. This reduces their influence on the
estimates of other fixed effects, improving predictions for future
experiments (Henderson, 1982) with different individuals and
batches.

For the psychometric Bayesian method (method ii), we applied a
probabilistic model to estimate discrimination thresholds, using the
Stan language (Carpenter et al., 2017; http://mc-stan.org/) via the
brms package (v2.6.0; Bürkner, 2018; https://cran.r-project.org/
web/packages/brms/) within R. Here, we used a logistic regression
model incorporating the psychometric function (see Kirwan and
Nilsson, 2019), with success rate for random guessing (0.5) as the
estimated lower asymptote and the lapse rate, found in tests with the
unrewarded colours O6 and G6 in each experiment, as the upper
asymptote. We reparameterised the psychometric function to directly
assess the effects of conditions on the curve’s inflection point (threshold
Tip) and the range of colour differences that account for 80% of the
response range [threshold (m), width (w)]: the ‘m,w’ parameterisation
(Kuss et al., 2005; Houpt and Bittner, 2018; also known as ‘threshold,
support’: Alcalá-Quintana and García-Pérez, 2004).

The fixed (population-level) effects accounted for in this model
were colour difference, background colour, whether background and
stimulus were of the same colour type (e.g. green stimuli on a green
background) or different, sex of the individual tested, and their
higher order interactions. Individual identity and batch were included
as random (group-level) effects, permitting unique thresholds,
threshold-width and lapse rates for each individual and batch.

We applied informative priors for threshold, width and lapse rate
(to restrict estimates to the range of colour differences sampled) but
applied a specific informative prior to keep the lower asymptote near
0.5. Using the fitted psychometric function, an additional threshold

Table 4. Model selection results for the psychometric MLE method (method i) comparing models explaining the performance of chickens
discriminating orange colours

Term(s) AIC ΔDeviance Δd.f. P-value Rank status

a. Comparison with a null model
Fixed effects model
Discrimination performance∼Colour.difference:background colour:sex
+individual identity
+batch

381.21 Deficient
2×Ind
batch b
background:_sex

Null model
Discrimination performance∼1

972.52 629.33 19 <2.2e−16 Full

b. Model selection
Colour.difference:background colour:sex 379.34 0.14 1 0.71 Deficient

2×Ind
background:_sex

Background colour:sex 379.34 0 0 Deficient
2×Ind

Colour.difference:sex 377.42 0.077 1 0.78 Deficient
2×Ind

Colour.difference:background (retained) 410.24 34.82 1 3.61e−09 Deficient
2×Ind

Batch 377.42 0 0 Deficient
2×Ind

Sex 377.42 0 0 Deficient
1×Ind

Individual identity (retained) 393.17 41.83 13 0.0001 Full

c. Final model
Discrimination performance∼Colour.difference:background
+individual identity

377.42

(a) Likelihood ratio test comparing the full model with a null model. (b) Model selection, using likelihood ratio tests to compare models with and without each of the
fixed effects terms specified. (c) Formula for the model chosen, including only the terms that were retained. Deviance and d.f. refer to residual deviance and
residual degrees of freedom. Terms that were retained in the final model are indicated in bold. Rank status reports whether themodel was rank deficient or not and
specifies term(s) that were not estimated. Note that in some cases the removal of a variable did not change degrees of freedom, which are related to changes in
rank status.
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was calculated from the point at which correct-choice rates were
modelled at 0.65, as for the psychometric MLE method (method i).
The ‘threshold, width’ model estimated had the form:

c ¼ gþ ð1� l� gÞ � logistic
2 lnðð1=aÞ � 1Þðx� mÞ

w

� �
; ð6Þ

where ψ is the predicted proportion of correct choices for colour
difference x, given a threshold at colour differencemwith a width of
w, also in units of colour difference. Changes in the proportion of
correct choices occur in the range between the proportion λ, expected
for random guessing, and (1−λ), themaximumpossible proportion of
correct choices given a lapse rate λ. The auxiliary parameter α scales
threshold-width w, so that it covers 1−2α of the range of x for which

the response curve is non-asymptotic (Kuss et al., 2005). Following
Houpt and Bittner (2018), we chose α=0.1, so that x±(w/2) gives the
range of colour differences for which predicted success rate is
between the lower 10% and top 10% of the guess rate–maximum
success rate interval [λ,(1−λ)], across which 80% of changes in the
proportion of correct responses would be predicted.

It should be noted that this is equivalent to the more commonly
used parameterisation:

c ¼ gþ ð1� l� gÞ � logisticðbxþ cÞ

¼ gþ ð1� l� gÞ
1þ e�ðbxþcÞ ; ð7Þ

in which b and c are the logistic curve’s slope and intercept in logit

Table 5. Model selection for the non-psychometric MLE model (method iii)

Term(s) ΔDeviance Δd.f. P-value

a. Comparison with a null model
Fixed effects model

Discrimination performance ∼
colour difference
+background
+same
+sex
+colour difference:background
+colour difference: same
+background: same
+colour difference:sex
+background:sex
+same:sex
+colour difference:background: same
+colour difference:background:sex
+colour difference: same:sex
+background: same:sex
+colour difference:background:same:sex
+(1+colour difference | individual)
+(1+colour difference * background | batch)

Null model
Discrimination performance∼1
+(1| indvidual)
+(1 | batch)

991.61 28 <2.2e−16

b. Model selection
Colour.difference:background:same:sex 10.8325 13 0.6248
Colour.difference:same:sex 5.9578 5 0.3103
Colour.difference:background:sex 1.9502 6 0.9242
Colour.difference:background:same 6.2955 5 0.2785
Background:same:sex 6.0654 6 0.4159
Colour.difference:sex 0.4841 2 0.7850
Background:sex 1.0469 3 0.7899
Colour.difference:background 0.6674 2 0.7163
Background:same 1.9928 2 0.3692
Colour.difference:same 3.4083 1 0.06487
Same:sex 2.3527 2 0.3084
Background 0.0292 1 0.8644
Sex 0.3568 1 0.5503
Same (retained) 14.768 1 0.0001
Colour.difference (retained) 961.17 1 <0.0001

c. Final model
Discrimination performance∼Colour.difference
+same
+(1+colour difference | individual)
+(1+colour difference * background | batch)

(a) Likelihood ratio test comparing the fixed effectsmodel with the null model (assuming choice performancewas based on random individual and batch variation).
(b) Model selection, using likelihood ratio tests to compare models with and without each of the fixed effects terms specified. (c) Formula for the model chosen,
including only the terms that were retained. NB Because different individuals did not experience different backgrounds, random effects of individual on the
‘background’ coefficient were not modelled. Terms that were retained in the final model are indicated in bold.
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space, respectively. An advantage of fitting the model in the form of
Eqn 6, as opposed to Eqn 7, is that the parameters can be directly
interpreted as properties of the observer’s response threshold, and
are comparable with the parameters of thresholds obtained with
other commonly used response functions (e.g. probit, Gumbel and
Weibull: Kuss et al., 2005).
We chose to account for individual differences in psychometric

curves by allowing for different threshold, width and lapse rate
estimates for each individual and batch, producing a mixed-effects
model. As Eqns 6 and 7 include the terms both within and outside of
the logistic transform, neither ψ nor logit(ψ) change linearly as a
function of x. Instead, changes in the rate of correct choices are non-
linear with respect to x. We therefore used the non-linear modelling
function in the brms package (Bürkner, 2018) in R (https://cran.r-
project.org/web/packages/brms/vignettes/brms_nonlinear.html) to
fit mixed-effects psychometric models.

In order to restrict estimates of threshold and width to positive
numbers (colour differences >0) and produce estimates of lapse rate
between zero and one, these parameters were estimated as the
natural logarithms of threshold and width, and as the logit transform
{ln[x/(1−x)]} of lapse rate. An informative prior distribution of
Normal(0,1) was chosen for ln(threshold), ln(width) and their fixed
effects coefficients, maintaining 95% of prior probability density on
estimates between 0.14 and 7.10. A bounded prior distribution of
Normal(−3,10), with an upper bound at −1, was chosen for
logit(lapse rate), to exclude only lapse rates smaller than 10−10 and
greater than 0.27. Such large lapse rates would suggest a maximum
proportion correct of 0.73, below the learning criterion required for
an animal to qualify for these experiments. Indeed, maximum
proportion correct was above 0.80 for all test animals (Fig. 2). While
such restrictions may not be necessary in cases where lapse rates can
credibly reach 0.27 and above, we recommend prior distributions for
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Fig. 2. Colour discrimination performance as a
function of colour difference to the rewarded
colour stimulus. The solid line in each panel
shows the maximum likelihood estimation (MLE)
psychometric model (method i), and the shaded
area gives the confidence interval of the fit. The
dotted lines give the estimated threshold (0.65
correct choices). The colour inset in each figure
shows the experimental condition: the border is
the background and the centre is the stimulus
series colour. (A) Group 1, discriminating green
colours on the green background. (B) Group 3,
green colours on the orange background.
(C) Group 4, orange colours on the orange
background. (D) Group 2, orange colours on the
green background. Each group had 8 chickens;
each circle or square represents the proportion of
correct choices (N=40) of one chicken; note that
some points lie behind the others.
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logit(lapse rate) that are bounded near the limit for credible lapse
rates, where known. This helps to avoid positive feedback loops of
increasing lapse rates and widths, approaching a flat curve, or a
reversal of the positions of the lapse rate and guess rate (when lapse
rate>1−guess rate) during estimation. The default prior distribution
for the standard deviation of random effects in brms (Bürkner,
2018) was used for effects of individual identity on ln(threshold),
ln(width) and logit(lapse): a half Student t distribution with 3
degrees of freedom, a mean at 0 and a standard deviation of 10. A
specific bounded prior distribution of Beta(α=250, β=250) was
applied to guess rate, with a lower bound at 0.25 and an upper bound
at 0.75. This generally excluded guess rate estimates outside of the
range from 0.45 to 0.55, and avoided a reversal of the positions of
the lapse rate and guess rate during estimation, while permitting
slightly higher rates of correct guessing in the control condition than

might be expected. In cases where higher rates of correct guesses are
more credible, a less specific, unbounded prior distribution could be
applied.

Parameter estimation used four Markov–Chain Monte Carlo
(MCMC) chains, each including 5000 ‘warmup’ iterations and
generating 5000 ‘post-warmup’ samples. The chains converged
well for all parameters (potential scale reduction statistic:
Rhat=1.00), producing effective sample sizes that represented
more than 20% of ‘post-warmup’ samples in all cases. For further
predictive diagnostic checks and cross-validation see Fig. S4.

For the non-psychometric MLE method (method iii), which
estimates random effects, we applied the methods used by Olsson
et al. (2016), and Olsson and Kelber (2017), using a mixed logistic
regression model, without incorporating the psychometric function.
This model was chosen specifically to allow for direct comparison
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Fig. 3. Bayesian model predictions for
performance as a function of colour
difference. The solid line in each panel shows the
estimated psychometric model, the blue points
indicate the estimated thresholds and the shaded
area gives the ‘width’ for each threshold. The
black dotted lines give the estimated threshold for
0.65 correct choices, whereas the blue dashed
lines give the inflection-point threshold modelled.
The blue error bars indicate the 95% credible
interval for each estimate of threshold,
representing the bounds containing 95%ofmodel
estimates generated during Bayesian estimation.
The colour inset in each figure shows the
experimental condition as in Fig. 2. (A) Group 1,
green stimuli, green background. (B) Group 3,
green stimuli, orange background. (C) Group 4,
orange stimuli, orange background. (D) Group 2,
orange stimuli, green background. Each group
had 8 chickens; each circle or square represents
the proportion of correct choices (N=40) of one
chicken; note that some points lie behind the
others.
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with the previous studies (Olsson et al., 2016; Olsson and Kelber,
2018). We used the lme4 package (https://cran.r-project.org/web/
packages/lme4/) in R (see Olsson et al., 2016, 2017). These models
tested choice performance as a function of the colour difference
between stimuli. As per the psychometric Bayesian method (method
ii), fixed effects of colour difference, background colour, similarity
of background and stimulus colour type, sex and their higher order
interactions were accounted for, and individuals and batches were
included as random effects, with different intercepts and slopes.

RESULTS
All chickens were highly motivated throughout the experiment and
learned to discriminate the rewarded stimulus colour (O+ or G+)
from the most different unrewarded stimulus colour (G6 or O6) on
both backgrounds. In all experimental groups, choice performance
differed depending on the colour difference between the
unrewarded and the rewarded stimulus colour (Figs 2 and 3).

Psychometric MLE method
For this method,model selection, comparing the deviance andAICof
fitted models, suggested a model which included the variables colour
difference between stimuli, background colour, individual identity
and an interaction between colour difference and background colour,
for the orange stimuli, and a model including the variables colour
difference and individual identity for the green stimuli (Tables 3 and
4). The inclusion of an interaction between colour difference and
background indicates that the slope of the psychometric function
depends on the background colour, with steeper slopes when stimulus
and background colours were similar (orange stimuli on orange
background) and shallower slopeswhen stimuli and backgroundwere
very different (orange stimuli on green background). However, some
models converged poorly with this method, which hampered accurate
estimation of the effect of some variables, and several models were
rank deficient, mainly concerning estimates for batch and a few
individual chickens (Tables 3 and 4). Model summaries can be found
in Tables S1 and S2.
The predictions of the selected models for the four individual

groups are compared in Fig. 2. These models included the variables
colour difference between stimuli and individual identity. The
thresholds (set at 0.65 correct choices) of chickens discriminating
orange stimuli were 0.94 JND (credible interval, CI 0.69–1.16 JND)
on the orange background, and 1.21 JND (CI 0.70–1.65 JND) on the
green background, and the slopes of the psychometric functions
at threshold were 0.78 and 0.20, with the orange and green
background, respectively (Fig. 2A,B, Table 6). For chickens
discriminating green stimuli, we found thresholds of 1.11 JND
(0.66–1.54 JND) with the orange background and 0.67 JND (0.45–
0.86 JND) with the green background (Fig. 2C,D, Table 6) and the
respective slopes were 0.10 and 0.66.

When using the inflection point as threshold estimate, the
following thresholds (and error estimates) were obtained; 1.04
(0.83–1.31) JND for chickens discriminating orange stimuli on
orange background and 1.63 (1.17–2.09) JND on green background,
and 1.18 (0.78–1.64) JND for chickens discriminating green stimuli
on orange background and 0.79 (0.59–0.99) JND on green
background (Table 6).

Psychometric Bayesian method
The results using the Psychometric Bayesian method (Fig. 3;
Fig. S2) were similar but expressed greater uncertainty regarding the
shallow slopes of the psychometric functions observed in both
experiments, in which stimulus colours and background colour were
very different. For this method, we used the inflection point of the
psychometric function as a threshold estimate. As these values are
more strongly influenced by the function’s intercept, the variations
in performance for below-threshold conditions have a strong
influence on the fitted intercept and hence the estimated
threshold. Grey shaded regions indicate estimated threshold-
widths (80% of the rising region of the curve), the region within
which the threshold would be expected to occur. Thewidths of these
regions are inversely proportional to the slope.

The CIs shown as blue error bars in Fig. 3 indicate the
distributions of model estimates generated during Bayesian
estimation, illustrating the robustness of the estimate. The
narrower CIs for the experiments in which stimulus and
background colours were of the same type (in comparison to
those with differing type) indicate lower uncertainty in these
threshold estimates. Thresholds, estimated at the inflection point,
were 1.07 JND (CI 0.84–1.37 JND) for orange stimuli against an
orange background, 1.36 JND (CI 1.04–1.76 JND) for orange
stimuli on a green background, 1.09 JND (CI 0.83–1.43 JND) for
green stimuli against an orange background and 0.81 JND (CI 0.62–
1.05 JND) for green stimuli against a green background. Posterior
distributions for thresholds and threshold-widths in each condition
and fitted curves and thresholds for each individual are available in
Figs S2 and S3. Posterior predictive checks, which compared the
observed data with simulated data (derived from model predictions)
accurately recovered the count (trial success and failure)
proportions, supporting the validity of this model (Fig. S4).

Non-psychometric MLE method
The non-psychometric MLE model found significant effects of the
difference between stimulus colours (colour difference) and the
match between stimulus and background colour (same), but no
independent effects of background colour or sex on correct choice
rates, for both green and orange stimuli (Table 5). The model
including colour difference as a fixed effect had lower AIC scores
and significantly lower deviance than the null models, which

Table 6. The estimated discrimination thresholds

Threshold estimate (JND)

Method
Group 1
(Green on green)

Group 2
(Green on orange)

Group 3
(Orange on green)

Group 4
(Orange on orange)

Psychometric MLE (i) Binomial (65%) 0.67 (0.45–0.86) 1.11 (0.66–1.54) 1.21 (0.70–1.65) 0.94 (0.69–1.16)
Psychometric Bayesian (ii) Binomial (65%) 0.66 (0.53–0.81) 0.96 (0.77–1.15) 0.98 (0.80–1.17) 1.01 (0.80–1.26)
Non-psychometric MLE (iii) Binomial (65%) 0.57 (0.30–0.88) 1.09 (0.74–1.36) 1.09 (0.74–1.36) 0.57 (0.30–0.88)
Psychometric MLE (i) Inflection point 0.79 (0.59–0.99) 1.18 (0.78–1.64) 1.63 (1.17–2.09) 1.04 (0.83–1.31)
Psychometric Bayesian (ii) Inflection point 0.81 (0.62–1.05) 1.09 (0.83–1.43) 1.36 (1.04–1.76) 1.07 (0.84–1.37)

Discrimination thresholds estimated for each experiment and for each method, both at the level just above chance according to binomial statistics as well as the
inflection point, in the different experimental conditions from different psychometric methods. Error estimates correspond to confidence intervals.
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assumes that choice performance was an effect of only individual
and batch variance (Table 5). The resulting model fits can be found
in Fig. 4.

DISCUSSION
In our experiments, we found that the colour discrimination
performance of chickens depends on background colour.
Chickens had higher discrimination thresholds when the
background colour differed strongly from the stimulus colours, in
keeping with earlier results from zebra finches (Lind, 2016) and
humans (Krauskopf and Gegenfurtner, 1992; Smith et al., 2000).
Discriminability differed less in our experiments than for zebra
finches (Lind, 2016); additionally, one analysis method (non-
psychometric MLE), out of three, suggested that chickens
discriminating green colours were not affected by the background

colour. Our finding that the slopes of the psychometric functions
differed depending on background colour (Figs 2 and 3) agrees with
the data in fig. 5 of Lind (2016). The difference in the size of the
effect between the two studies may be due to species differences, but
different experimental conditions may also have contributed. In the
previous study, the zebra finches saw stimuli and backgrounds on a
computer screen, while in the current study, chickens saw three-
dimensional stimuli. Moreover, fewer animals were tested in the
zebra finch study, and the psychometric functions fitted to the
choice data had shallower slopes even in the control conditions.

All statistical models used to analyse behavioural performance
agreed that the similarity of stimulus colours to the background
colour affected choice performance, with one exception, which
suggests that this conclusion is robust. The psychometric MLE
method has the benefit of being easy to use. However, the method
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Fig. 4. Results with non-psychometric MLE
models. The models include individual and batch
variation as random effects and colour difference,
background, stimulus similarity, sex and their
interactions as fixed effects as predictors of choice
performance. Lines present 0.65 correct choices,
the shaded area is the confidence interval of the
estimate, and dots present average choices for the
chickens (n=8, making 40 choices each). For
details of the methods used, please see Olsson
et al. (2016, 2017).
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had problems estimating effects of all variables and properly
identifying some models. In addition, fixed effects models, such as
this one, treat errors within subjects equally to errors between
subjects and may produce invalid standard errors of parameter
estimates (Moscatelli et al., 2012). The non-psychometric MLE
method includes random effects, which may correct for this
problem. However, functions fitted for the population do not fit
the data very well and are poor predictors for future performance, as
they do not estimate the necessary parameters to fit a psychometric
function, although we do not exclude this possibility. Therefore, it is
also difficult to estimate the threshold of performance from the fit.
The psychometric Bayesian approach resolves these problems. It
considers individual identity and models a psychometric function
from which thresholds can be estimated for the population. In
addition, Bayesian statistics treat probability in a more intuitive
manner than frequentist statistics and provide a better framework to
test hypotheses (O’Hagan, 2004). Furthermore, the convergence,
model identification and rank deficiency problems of the
psychometric MLE method were not found in the Bayesian
approach. This may indicate overfitting in psychometric MLE
models, in which individual variation was treated as a fixed effect
rather than a random effect, so it is possible that psychometric
Bayesian models provide a better representation of the predictions
that can be drawn from the data, given the spread of individual data
points. The Bayesian approach requires a prior – a probabilistic
specification of the parameter, aside from the data – that can
influence the (posterior) estimate of that parameter. We propose that
in comparable cases, the psychometric MLE method could obtain a
first estimate for prior specification on thresholds across the
population, to apply the psychometric Bayesian method to
perform the analysis, as it is shown to better estimate variables
when data are limited.
The differences in the slopes of the psychometric functions are

striking. In human psychophysics, the slope of a psychometric
function measures the certainty of the subject (e.g. Olkkonen and
Allred, 2014), and a shallower slope reflects greater uncertainty.
Krauskopf and Gegenfurtner (1992) and Smith et al. (2000) did not
report individual psychometric functions, but a similar effect is
known from achromatic vision. In tests with high achromatic
contrasts between stimuli and background, psychometric functions
have shallower slopes than in tests with low contrasts (e.g. Wallis
et al., 2013). To our knowledge, the slopes of psychometric curves
have rarely been analysed from other species. We suggest that, as for
humans, they may indicate the certainty of the subject and impact
visually guided behaviours, such as detecting a food item or
assessing mate quality.
The dependence of the slope on background colour could be a

direct result of the sigmoid photoreceptor response properties (V-log
I-curves; Lind, 2016). Photoreceptors adapt to background intensity
(Boynton and Whitten, 1970; Normann and Werblin, 1974), and
their contrast sensitivity – and thus, certainty – is greatest in a
narrow range centred on background intensity. High contrast
against the background reduces the contrast sensitivity of each
receptor channel, such that uncertainty is higher for the detection
of small contrasts between stimuli. An additional mechanism that
could explain the observed differences is simultaneous colour
contrast, which builds on lateral interactions in the retina such that
the colour of the background changes the appearance of the
stimulus colours (e.g. Neumeyer, 1980; Dörr and Neumeyer, 1996;
Lotto and Purves, 2000).
The fact that thresholds differed little with background colour

indicates that the RNL model (Vorobyev and Osorio, 1998) is a

good predictor of absolute thresholds, even under these conditions.
However, the model does not account for uncertainty resulting from
large colour differences to the background and, thus, different
adaptive states of visual system. As in the experiments with zebra
finches (Lind, 2016), we found large inter-individual variation in
discrimination thresholds and the slopes of the psychometric
functions (see Fig. S3). These differences, and potential differences
between batches of chickens, caution against over-interpretation of
small variations among colour discrimination data. Importantly,
when slopes differ, threshold estimates also depend on the
definition of the threshold, i.e. whether we use the proportion of
0.65 correct choices as threshold, as appropriate for a binomial
distribution with n=40, or as a more conservative estimate, the
inflection point of the psychometric curve.

The influence of background colours on colour discrimination is
not only interesting from a psychophysics perspective but also
directly relates to ecology: colours of potential mates or ripe fruit are
often seen against complex, strongly contrasting backgrounds.
Background colour may thus influence the certainty with which
animals interpret the colour and, thus, the quality of such objects.
Indeed, sexual traits that have strong contrast against background
colours are more variable in birds, presumably to overcome the
reduced visual discriminability (Delhey et al., 2017). Our study,
together with Lind’s (2016) study on zebra finches and studies on
humans (e.g. Brown and Macleod, 1997), suggests that ignoring
background colours in the estimation of colour discrimination
performance may sometimes predict colour perception in a natural
environment inaccurately. We hope that our results can contribute to
a future extension of the RNL model to also include such realistic
conditions in visual ecology.
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