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Summary 

Tunicates, small invertebrates within the phylum Chordata, possess 

a robust tubular heart which pumps blood through their open circulatory 

systems without the use of valves. This heart consists of two major 

components: the tubular myocardium, a flexible layer of myocardial cells 

which actively contracts to drive fluid down the length of the tube; and a 

pericardium, a stiff, outer layer of cells that surrounds the myocardium 

and creates a fluid-filled space between the myocardium and the 

pericardium. We investigate the role of the pericardium through in vivo 

manipulations on tunicate hearts and computational simulations of the 

myocardium and pericardium using the immersed boundary method. 

Experimental manipulations reveal that damage to the pericardium results 

in aneurysm-like bulging of the myocardium and major reductions in the 

net blood flow and percent closure of the heart’s lumen during 

contraction. In addition, varying the pericardium-to-myocardium (PM) 

diameter ratio by increasing damage severity was positively correlated 

with peak dye flow in the heart. Computational simulations mirror the 

results of varying the PM ratio experimentally. Reducing the stiffness of 

the myocardium in the simulations reduced mean blood flow only for 

simulations without a pericardium. These results indicate that the 

pericardium has the ability to functionally increase the stiffness of the 

myocardium and limit myocardial aneurysms. The pericardium’s function 

is likely to enhance flow through the highly resistive circulatory system 

by acting as a support structure in the absence of connective tissue within 

the myocardium. 

Keywords: Ciona, fluid dynamics, pericardium, valveless heart, 

tunicate 
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Introduction 

Many animals contract flexible, muscular tubes to drive viscous 

fluid through smaller, resistive tubes, including hearts in several phyla 

(Xavier-Neto et al., 2007, 2010), drinking butterflies and moths (Krenn, 

2010), lymphatic pumps (Gashev, 2002), and tracheal systems in 

terrestrial insects (Greenlee et al., 2013; Harrison et al., 2013). These 

pumps are versatile and widespread, operating over several orders of 

magnitude of sizes and flow velocities and occurring commonly and 

independently throughout bilaterians (Xavier-Neto et al., 2007). 

Despite being both common and widespread, the dynamics of 

driving fluid with a flexible boundary that deforms as a result of viscous 

resistance are not well understood. In typical mathematical models of 

pumping, the motion of the pump is prescribed and the resulting fluid 

flow is determine analytically or numerically. Furthermore, accessory 

structures to these pumps, such as trabeculae, blood cells, and external 

tissues, are often ignored. In this study, we will focus on the interaction 

between the flexible, contractile boundary responsible for driving fluid 

flow and an accessory structure, the pericardium, through animal 

experiments and a computational model. 

Tunicates (urochordates) are small marine invertebrates belonging 

to the phylum Chordata (Fig. 1A). Recently, tunicates have been 

investigated as a model system for vertebrate embryonic heart 

development because: they represent vertebrates’ closest invertebrate 

relatives and as a possible sister taxon of Vertebrata (Delsuc et al., 2006; 

Davidson, 2007; Lemaire, 2011); they demonstrate a deep phylogeny in 

the genetic mechanisms of heart development (Nunzi et al., 1979; 

Burighel et al., 2001; Xavier-Neto et al., 2010); and fluid flow in their 

circulatory system is driven by a valveless, tubular heart that resembles 
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the size, morphology, and kinematics of the hearts of developing 

vertebrate embryos (Rupert and Carle, 1983; Dooley and Zon, 2000; 

Manner et al., 2010; Lemaire, 2011). Thus, understanding the flow 

produced by valveless, tubular hearts of tunicates is key to understanding 

both the ontogenetic and evolutionary development of closed, high-

pressure circulatory systems of vertebrates (Santhanakrishnan and Miller, 

2011; McMahon, 2012; McMahon et al., 2011; Dooley and Zon, 2000; 

Moorman and Christoffels, 2003; Xavier-Neto et al., 2007, 2010; Simoes-

Costa et al., 2005). 

The circulatory system of most tunicates is characterized as open, 

with major vessels that lead away from the heart and open into sinuses to 

deliver blood to body tissues. Unusually robust for a sessile, suspension-

feeding animal (Xavier-Neto et al., 2010), the tubular heart drives fluid 

flow through these resistive tissues of the body and reverses flow 

periodically to even the transport of oxygen, nutrients, and waste 

throughout its circulatory system (Heron, 1975). 

The tunicate heart (Fig. 1B) consists of a layer of myocardial tissue 

formed by an invagination of the outer, stiff pericardium, each one cell-

layer thick (Kalk, 1970). The myocardium and pericardium are connected 

at the raphe on the basement membrane of pericardium where the 

invaginated tube has fused together and runs along the ventral surface of 

the pericardium (Xavier-Neto et al., 2010). The myocardium consists of a 

field myoepithelial contractile cells, which are much longer than they are 

wide, and a 1-2  m thick basal membrane that lines the lumen (Kalk, 

1970). The fusiform cells do not form fibers, but the myofibrils run along 

the cells’ lengths and are at a diagonal in relation to the basement 

membrane of the pericardium (Kalk, 1970). The pericardium is 

innervated early in development from the right subendostylar nerves and 

latero-posterior mantle nerves through the raphe, which possibly have a 
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role in sensing pressure within the cardiac lumen (Nunzi et al., 1979; 

Burighel et al., 2001). 

The myocardium contracts to reduce the radius of the heart’s 

lumen. This contraction propagates down the length of the heart tube to 

drive blood flow through the circulatory system. These contraction waves 

are produced by nodes on either end of contractile region of the heart tube 

(Anderson, 1968; Heron, 1975). The pericardium consists of an outer 

layer of cells, which are stiff and resistant to manipulation. Cells of the 

pericardial tissue are square and junctions between cells provide 

mechanical support, although no additional specialized connective tissue 

exists in the myocardium or pericardium (Kalk, 1970). 

For many vertebrates, the pericardium is an important structure. It 

serves to support the heart in the thoracic cavities of mammals, to limit 

ventricular fill, and to prevent rotation during ventricular contraction that 

is associated with higher mortality (Fritz et al., 2012). In elasmobranch 

and teleost fish, the pericardium supports sub-ambient pressures in the 

pericardial cavity that surrounds the atrium and ventricle, which aids in 

filling the ventricles vis a fronte (Sudak, 1965b,a; Shabetai et al., 1979; 

Farrell et al., 1988). Recently, fluid motion generated by heart beats 

between the pericardium and epicardium during vertebrate embryonic 

development was investigated and found to move important precursor 

cells that contribute to epicardium morphogenesis in zebrafish (Peralta et 

al., 2013). 

Although an important structure for heart function in vertebrates, 

little is known about the function of the pericardium in tunicates. Since 

flows in the tunicate heart are viscous dominated, the fluid dynamics of 

transport are very different than the large hearts of most adult vertebrates 

but closer to those of embryonic vertebrate hearts. Anderson (1968) and 

Kalk (1970) posited that the pericardium likely plays an important 
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mechanical role in blood flow after observing that a damaged pericardium 

resulted distention of the myocardium and an interruption in contractions. 

Xavier-Neto et al. (2010) has suggested that distention of the contractile 

layer is a distinct problem for valveless tubular hearts in general. The 

pericardium could improve some of the mechanical issues surrounding 

valveless, tubular hearts by physically restricting distention of the tube. 

To investigate the function of the pericardium in tunicates, 

computational modeling can be a valuable complement to experimental 

manipulation. Models can be used to eliminate confounding biological 

features of flow, e.g. chemical signaling, as well as decouple physical 

features of flow that may contribute differently to biological function. For 

example, Taber et al. (2007) used a computational fluid dynamics model 

to show that cardiac cushions helped to initiate the transition between 

peristaltic and pulsatile flow in tubular hearts. Miller (2011) and 

Santhanakrishnan and Miller (2009) used numerical simulations of fluid-

structure interactions to quantify the flow and vortex formation in the 

early embryonic ventricle. Computational models are also being used to 

investigate the pumping mechanism by which valveless tubular hearts 

drive flow (Baird et al., 2014; Loumes et al., 2008; Avrahami and Gharib, 

2008). 

Mathematical models of pumping can be divided into those in 

which 1) the motion of the boundary is prescribed and the fluid is driven 

by that motion, and 2) the fully-coupled fluid-structure interaction 

problem of a pump that drives the flow and is also deformed by the flow 

is solved (Taber et al., 2007; Jung and Peskin, 2001; Lee et al., 2009; 

Loumes et al., 2008; Fritz et al., 2012; Lee et al., 2012; Avrahami and 

Gharib, 2008).The Immersed Boundary Method (IBM) provides a 

relatively easy way to solve the fully coupled fluid-structure interaction 

problem (Peskin, 2002) and has been used by several groups to simulate 
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flow in tubular hearts (Baird et al., 2014; Jung and Peskin, 2001; Lee et 

al., 2009; Jung et al., 2008; Lim and Jung, 2010). Despite its prominence 

as an anatomical structure, none of these numerical studies have included 

a rigid structure surrounding the contracting region of the tubular heart. 

In this study, we investigate the role of the pericardium in 

producing fluid flow in the valveless, tubular heart of the solitary tunicate 

Ciona savignyi Herdman. We use two approaches: 1) Experimental 

manipulation: measurements of blood flow in the lumen and contraction 

kinematics were taken on animals with in vivo manipulations of the 

pericardium and otherwise intact circulatory systems, and 2) 

Computational modeling: IBM models were used to simulate flow 

through a racetrack circulatory system driven by a valveless, tubular 

contracting region with and without a rigid pericardium. 

Results 

Experimental manipulations on animals 

Relaxed body lengths of tunicates (n = 16 animals) varied from 25 

to 55 mm. Neither myocardium diameter (F(1,15) = 2.62, corrected p = 1) 

nor pericardium diameter (F(1,15) = 4.75, corrected p =0.50), a 

measurement that should not change with damage to the pericardium, had 

a significant relationship with body length. Pericardium-to-myocardium 

diameter ratio (PM) ratio (see Materials and Methods for full definition) 

also did not have a significant relationship with body length (F(1,15) = 

1.47, corrected p = 1). 

Experimental observations of the myocardium kinematics show 

that the myocardium becomes inflated within the pericardial space after 

the pericardium is damaged and pericardial fluid is allowed to leak out of 

the pericardial space. The average PM ratio dropped from 2.4   0.09 for 

undamaged condition to 1.8   0.2 for the damaged condition, and this 

decrease in PM ratio with increasing damage level is significant (F(1,15) 
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= 80.1, corrected 6= 2 10p  ). We observed that severe damage to the 

pericardium often resulted in kinks to the myocardium, occluding flow in 

the lumen during pumping. 

After pericardium damage, it was more difficult for the 

myocardium to contract, but the rate at which the myocardium contracted 

did not change. The contraction ratio (diameter of myocardium during 

contract to diameter of relaxed myocardium) ranged from 0.135 (86% 

closure) to only 0.566 (43% closure) (Fig. 2C). This decrease is not 

significantly correlated with pericardium damage (F(1,14) = 9.58, 

corrected p=0.10), but it was significantly correlated with PM ratio 

(F(1,14)=12.7, corrected p=0.034). Heartbeat frequency does not change 

significantly with damage (Fig. 2A, F(1,14) = 0.112, corrected p = 1) or 

PM ratio (F(1,14) = 0.2922, corrected p=1). Actuation of heart beats is 

not affected by changes in myocardium diameter, but the ability of the 

myocardium to contract fully is affected. 

Peak dye speed in the lumen was severely interrupted by damage to 

the pericardium (Figs. 3 and 2B and D). There is a proportional response 

to damage; there is a significant linear relationship between PM ratio and 

peak dye speed, shown in Fig. 2D (F(1,13) = 78.3, 6= 8 10p  ). 

Contraction ratio also negatively correlated with peak dye speed (F(1,9) = 

5.27, p = 0.002). 

Two outliers were identified and omitted, one in the peak dye 

speed measurement (damaged group, PM ratio = 1.63, peak dye speed = 

7.13 mm s–1; Bonferroni p = 0.012). We observed that during the 

dissection, the myocardium near the terminus of the heart (at the point of 

injection) was inadvertently damaged and allowed a large amount of 

blood to leak out. This apparently resulted in an increase in peak dye 

speed likely due to relief of pressure in the lumen rather than a result of 

active pumping. The other outlier omitted is one in the contraction ratio 
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measurement (damaged group, PM ratio = 1.96, contraction ratio = 0.31; 

Bonferroni p = 0.004). 

Computational model 

A numerical model of an elastic heart tube connected to a nearly 

rigid racetrack was constructed to study flow through the Ciona heart. 

The racetrack design was used for easy comparison to previous models of 

tubular heart pumping (Jung and Peskin, 2000; Hickerson et al., 2005; 

Baird et al., 2014; Avrahami and Gharib, 2008; Lee et al., 2012). The 

contracting section of the tube resists bending and stretching. The 

racetrack section was constructed by connecting two sections of straight 

tube (one of which represents the elastic heart) to curved sections. The 

resting diameter of the racetrack was constant throughout its length. 

Dimensions and elastic properties of the racetrack are given in Table 1. A 

diagram of the model set up is shown in Fig 4. 

The contractions waves were driven by a simplified model of the 

heart electromechanics. The propagation of the action potentials along the 

heart tube were modeled using the FitzHugh Nagumo equations 

(FitzHugh, 1955; Nagumo et al., 1962). The FitzHugh Nagumo equations 

are commonly used to model problems in electrophysiology, and they 

were derived by reducing the Hodgkin Huxley equations to two variables. 

Assume that v(x,t) is the dimensionless electropotential that is a function 

of position along the tube, x, and time, t, such that v=0 is the resting 

potential and v=1 is the maximum electropotential. Also assume that w 

represents a dimensionless ‘blocking mechanism’ that represents the 

action of the potassium channels and the blocking of the sodium ion 

channels. w=0 is the resting strength, and w=1 is the maximum strength. 

The 1-D FitzHugh Nagumo equations may be written as, 

2( )( 1) ( , ) x

v
v v a v w I x t D v

t


      


(1) 
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( )
w

v w
t

 


 


 (2) 

(3) 

where D is diffusion coefficient of the electropotential, a is the threshold 

potential,   is a resetting rate,   is the strength of blocking, and I(x,t) is 

an applied current that represents the action of the pacemaker. The 

equation for the applied current is given as follows: 

: 0.175 < < 0.02 ,

( , ) = < < ( )

0 :

max tube tubeI L x L

I x t nT t n T dp

otherwise








(4) 

where tubeL  is the length of the heart tube, maxI  is the amplitude of the 

applied current, n is an integer representing the pulse number, T is the 

period of the pulse, and dp is the duration of the applied current. 

The next step is to connect the electrophysiology model with the 

generation of contraction force. We used a simple model to drive the 

motion of the 2D heart with 1D muscles. Linear springs with variable 

spring stiffness and zero resting lengths were used to connect the top and 

bottom of the tube. The resting lengths of these springs were given as 

functions of the local electropotential according to the following rule: 

4 : 0
=

0 : < 0

max

m

k v v
k

v

 



(5)

where maxk  is the maximum effective stiffness of the springs since 

0<v<1, and no force is applied by the muscle springs when v<0. maxk  was 

set to /100sk . This is only a toy model of muscle activation and force 

generation, but it has the necessary effect of creating a contraction wave 

that follows the depolarization along the heart tube. 

For each simulation time step, the fluid velocity and pressure 

profiles was recorded at the outflow end of the myocardium at points 

across the diameter of the rigid circulatory tube. Two flow speeds were 
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then calculated from the fluid velocity profiles: peak flow speed and 

mean flow speed. For each time step, the maximum speed recorded in 

each fluid velocity profile was recorded. Of these, the local maximums 

for each heart beat were chosen and then time-averaged to find the peak 

flow speed. The mean flow speeds were found by spatially averaging the 

speeds across the tube’s diameter and then taking the time-averaged mean 

of those speeds. 

From the pressure profiles, four values of pressure were calculated. 

Pressure across the diameter of the racetrack was averaged spatially and 

temporally to find average pressure. The maxima and minima of spatially 

averaged pressure versus time were selected for each compression wave 

to find the average maximum pressure and average minimum pressure, 

respectively. The difference between average minimum and maximum 

pressures were calculated for each time point in the simulation and then 

averaged to find the difference between average minimum and maximum 

pressure. 

Simulation Results 

Using parameter values of Wo = 0.30, 12 2= 2.3 10 NmEI  , and Freq 

= 0.554 Hz, the pericardium simulation had a mean flow speed of 0.612 

mm s–1 and a peak flow speed of 3.6 mm s–1, while the no-pericardium 

simulation had a mean flow speed of 0.302 mm s–1 and a peak flow speed 

of 4.2 mm s–1. The ratio of mean flow speed to peak flow speeds are 0.17 

to 0.07 for pericardium and no pericardium cases, respectively. As with 

many of the simulations during parameter sweeps, the peak flow speeds 

of the no-pericardium simulation are higher than that of the pericardium 

simulation, but the mean flow speed values are twice as high for the 

pericardium simulation. 

In addition to the higher mean flow speeds, the pericardium limits 

local distention of the myocardium during contraction, particularly at the 
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junction between the myocardium and the rigid circulatory racetrack (Fig. 

5). This mechanical benefit is clear in Fig. 5E, where the pericardium and 

myocardium touch briefly, as compared to Fig. 5B where there is nothing 

to prevent the myocardium from bulging out. This results in higher mean 

flow speeds and greater travel of the fluid markers at the same time in 

each simulation. 

Increasing heartbeat frequency increases both mean flow speeds 

but leads to slightly lower peak flow speeds (Fig. 6A). Simulations with a 

pericardium does slightly better than no pericardium for frequencies less 

than 3 Hz, this difference increases at frequencies above 3 Hz. Mean-to-

Peak flow speed ratios are consistently better for pericardium case, 

difference increases with increasing frequency (Fig. 6B). 

For comparison over several orders of magnitude of Wo, only the 

dynamic viscosity,   was varied. Simulations with a pericardium 

outperform simulations without a pericardium in terms of mean flow 

speeds for Womersley number (Wo, see Eqn. 14) less than 1 (Fig. 6C). 

This gap closes to zero for 1Wo  . Peak flow speeds are generally lower 

for simulations with a pericardium than without. Mean-to-peak speed 

ratios see the largest difference around the Wo of the animal, with the 

pericardium having ratios about 2 times higher than no pericardium 

simulations. 

Within pericardium simulations, there seems to be no relationship 

between myocardium flexural stiffness (EI, see Materials and Methods 

for description) and mean flow speed. For simulations with no 

pericardium, mean flow speed decreases as the myocardium becomes 

more flexible while the peak flow speeds remain the same (Fig. 6E). As 

EI increases, the ratios for the two conditions converge (Fig. 6F), with the 

no-pericardium case exceeding the mean flow speed of the pericardium 

case at values of 10 2>1 10 NmEI  . Mean-to-peak speed ratios for 
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pericardium simulations are consistently higher than simulations without 

a pericardium. 

The pericardium generally reduces the maximum average pressures 

and the differences between maximum and minimum pressures within the 

circulatory system compared to simulations without a pericardium while 

not affecting the average pressure (Fig. 7). When Wo was varied, 

simulations with no pericardium where Wo > 0.2 have higher maximum 

pressures, lower minimum pressures, resulting in the circulatory system 

experiencing higher pressure differences (Fig. 7B). Pressure exhibits a 

similar non-linear relationship as peak flow speed with PM ratio (Fig. 

7A). When a section of pericardium at the inflow end of the contracting 

region was left open, pressure differences were greater than simulations 

with an intact pericardium but lower than simulations with no 

pericardium (Fig. 7A). 

Simulations demonstrate that there is a non-linear relationship 

between pericardium-to-myocardium (PM) diameter when the diameter 

of the pericardium was altered to change the ratio. Flow speeds (Fig 8A) 

as well as PM ratio and pressure (Fig. 7A). Both mean and peak flow 

speeds are lower for ratios < 2.4. Mean flow speed peaks at around PM = 

2.4–2.5, whereas peak flow speed is maximized around PM = 3.0–3.5. 

Beyond PM=2.5, mean flow speed drops slightly to the =PM   case (no 

pericardium). 

Comparison of Experiments and Simulations 

Since peak dye speed was measured in the animal manipulations, a 

direct comparison can be made between peak dye speeds from 

experiments and peak flow speeds from simulations. Fig. 8B shows a plot 

of peak dye speed measured from experiments (Fig. 2D) overlaid with 

peak flow speed from simulations at various pericardium-to-myocardium 

diameter ratios. The curves are very similar, showing a similar increase in 
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peak speeds with increasing values of PM. The extremes of the 

experiments have the most obvious differences with simulations (no 

damage and sever damage), but these difference amount to less than 1 

mm s–1 and simulation values are within the standard deviations of each 

experimental condition. 

It is important to note a potential limitation of the comparison 

between experiments and simulations. Pericardium damage in the animal 

results in a decrease in the PM ratio due to an increase in the diameter of 

the myocardium. The simulations were constructed to determine how the 

PM ratio affects net flow for a constant diameter tube. Despite the 

difference in the way the PM ratio is handled, there is still reasonable 

agreement between experiments and simulations. 

Discussion 

Pericardium improves blood flow driven by the myocardium 

Tunicates possess a heart capable of driving blood through a 

resistive, semi-open circulatory system. The heart consists of a 

myocardium that pumps blood peristaltically and a stiff tissue layer called 

the pericardium which encases the myocardium. The function of the 

pericardium was unclear, although observations made by Anderson 

(1968) and Kalk (1970) indicate that pericardial damage disrupts fluid 

flow through the circulatory system. 

Observations made on experimental manipulation on tunicate 

hearts in vivo and computational simulations support the idea that the 

pericardium plays an important role in the myocardium’s ability to 

contract and drive fluid flow. Experimental damage to the pericardium 

results in much lower peak dye speeds (Fig. 2B and D), and 

computational simulations show that adding a pericardium increases peak 

flow speeds (Fig. 6) and lowers pressure differences (Fig. 7). The 

differences in fluid flow in simulations are large at the Wo and PM ratios 

Th
e 

Jo
ur

na
l o

f E
xp

er
im

en
ta

l B
io

lo
gy

 –
 A

C
C

EP
TE

D
 A

U
TH

O
R

 M
A

N
U

SC
R

IP
T



of the animals. 

There is a negative correlation between contraction ratio and PM 

ratio (Fig. 2C), indicating that the myocardium unable to fully contract 

with damaged or absent pericardium. Experiments show that reduced 

contraction leads to lower dye speeds within heart. Simulations show that 

no pericardium (where aneurysms are most pronounced) results in lower 

net flows compared to simulations with a pericardium. 

For both the experiments and simulations, there is a range for PM 

diameter ratio where blood flow is fastest. When the pericardium is too 

narrow compared to myocardium’s diameter, both peak and mean speeds 

are reduced, pericardial wall interferes with the contraction of the 

myocardium (Fig. 8A). If the pericardial space is too wide, there is no 

benefit of pericardium and larger ratios approach the flow speeds of no 

pericardium simulations ( =PM ). Simulations point to the maximum 

mean flow speeds takes place at PM=2.4–2.6, which corresponds to the 

unmanipulated PM ratios measured on animals with intact circulatory 

systems (Fig. 8B). 

The increase in PM ratio after pericardial damage is correlated with 

a decrease in the contraction ratio and drop in the blood flow produced by 

the heart (Fig. 2), and the computational simulations suggest that there is 

a physical explanation for this response. Heart beat frequency does not 

change with pericardium damage (Fig. 2A) or increased pressure within 

the heart tube. These observations circumstantially suggest heart activity 

is not controlled through a pressure-sensing within the myocardium 

alone. 

Pericardium provides structural support for the myocardium 

Kalk (1970) notes that narrow vessels produce a ‘considerable back 

pressure’ which the heart needs to overcome in order to move fluid. Yet, 

few structural components in the myocardium itself can resist extreme 
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internal pressure, evidenced by the increase in myocardium diameter 

when the pericardium is damaged or removed. Since the pericardium is 

very stiff, it can resist the internal pressures generated by contraction of 

the myocardium by limiting the total volume of the myocardial lumen and 

pericardial space. Simulations results show that the addition of a 

pericardium reduces differences between maximum and minimum 

pressures (Fig. 7). Experimental results show that the myocardium closes 

the lumen less during contraction (Fig. 2C) as the diameter of the 

myocardium increases (reflected in PM ratio), which in turn lowers the 

peak speeds produced by the heart(Fig. 2D). 

It appears as if the myocardium cannot produce enough force to 

close the lumen sufficiently against internal pressure without the 

pericardium’s support, nor can it resist the increase in volume of the 

lumen as circulatory pressure forces more blood into the myocardium. 

Schulze (1964) notes that each cell (which has a 15:1 length to diameter 

ratio) has one myofibril aligned at a 45 degree angle with the length of 

the lumen, creating a helical spiral of myofibrils around the lumen (Kalk, 

1970). When the myocardial diameter increases (due to damage to the 

pericardium), the fiber angle must also increase which increases both the 

diameter of the myocardium and the length of the myofibrils (Kier, 2012). 

Although the force-length relationship is not known for tunicate cardiac 

muscle, likely the stretching of myofibrils exacerbates the inability of the 

myocardium to close the lumen during contraction. 

In addition to promoting closure of the lumen, the pericardium also 

acts to limit flow extremes produced by the flexible myocardium by 

physically disrupting the amount of vertical displacement of the 

myocardium during contraction. Simulations of blood flow with no 

pericardium showed that the myocardium bulges to create local 

distention, despite the relatively low-resistance posed by the racetrack 
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circulatory system (Fig. 5). These aneurysms are particular severe at the 

point where the flexible heart tube meets the rigid circulatory vessel. The 

general effect of these aneurysms, marked by high peak flow speeds 

relative to the mean flow speed generated by pumping, more back flow, 

and higher pressure differences, is that energy expended contracting the 

myocardium is wasted by expanding the flexible myocardium vertically, 

instead of driving flow inside the circulatory system. 

Implications for development of the vertebrate circulatory 

system 

Vertebrate hearts produce very high pressures to drive fluid flow 

through highly resistive tissues of the body. In order to produce these 

high pressures, the heart and vessels of the vertebrate circulatory system 

have an extensive network of connective tissue that resists both collapse 

under negative pressure and aneurysm under positive pressures. 

Weakening or failure of this support structure is often catastrophic 

(Vogel, 1994). 

During evolutionary time, the primitive cardiac tube increased in 

size, beat frequency, and pressure-generating force to continue to move 

blood through an increasingly large and complex network of small 

vessels. By covering the myocardium in a stiff, outer layer, the mean 

blood speed produced by the tubular heart increased. The pericardium 

enhances mean blood flow under a variety of conditions that reflect 

increasing body size and metabolic rate. The pericardium addresses a 

major problem that the primitive cardiac tube faced by scaling during 

evolution by providing one mechanism to extend the performance space 

of the primitive cardiac tube without major reorganization of tissues. 

Importantly, the pericardium in our simulations made the mean 

blood flow produced by the myocardium much less sensitive to the 

flexibility of the tube. This most likely benefited organisms both during 
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ontogeny and evolution as the material properties of vertebrate cardiac 

tissue changes with its level of organization; Young’s modulus (E) varies 

from 5 kPa for single cardiomyocytes to 200 kPa for an isolated cardiac 

muscle fiber (Mathur et al., 2001). Reducing sensitivity to tissue material 

properties would allow animals to use a wide variety of tissue 

organizations to maintain blood flow during growth and evolution. 
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Future work 

In this paper, we used a two-dimensional version of the immersed 

boundary method to perform numerical simulations of a pumping elastic 

heart tube surrounded by a stiff pericardium and compared the results to 

in vivo flows measured using dye visualization. Future work could 

incorporate measurements of the pressures within intact and damaged 

pericardia and heart tubes. It is also possible to obtain spatially resolved 

flow fields using micro-particle image velocimetry similar to what is 

described in Hove et al. (2003) and Vennemann et al. (2006). In terms of 

numerical simulations, an obvious next step is to move into three 

dimensions. In addition to resolving any 3D effects, this would allow that 

use of helically wound fibers to drive the motion of the heart tube. More 

detailed models of the electrophysiology and muscle mechanics could 

then be applied for the activation of muscle and generation of force. 

Finally more accurate models of the morphology of both the heart and the 

circulatory system could be used to better resolve the flow fields and 

intra-cardiac pressure gradients. For this first study, however, we believe 

that the experimental and modeling techniques are sufficient to highlight 

the important role of the pericardium for tiny heart tubes. 

Methods and Materials 

Maintenance of animals 

Individuals of the tunicate species Ciona savignyi Herdman were 

shipped overnight from the Ciona Stock Center (UC Santa Barbara, CA, 

USA) in cooled containers and then maintained for two to four weeks in a 

recirculating, artificial seawater system at 20 C  and salinity 32-34 ppt. 

Animals were fed commercially available live phytoplankton mixture 

(Phyto Feast Live, Reef Mariculture Inc, Campbell, CA, USA) every day 

during the maintenance period.
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Experimental manipulations 

Animals were relaxed in groups of two or three individuals with 

menthol crystals in a covered dish of seawater prior to experiments until 

relaxed (approximately 120 minutes). Animals were considered 

completely relaxed if there was no reaction to the insertion of a sharp 

probe into a siphon. Individual animals were then removed from menthol-

containing seawater to fresh seawater where the tunic was completely 

removed. Animals were then photographed with a standard cm ruler 

(which was used to measure relaxed body length using ImageJ (Rasband, 

1997-2002)) pinned with their atrial (excurrent) siphon to the left side of 

the body so the right side of the animal’s body was exposed. A small 

opening was then cut into the visceral mass to expose the heart without 

damaging the major vessels leading to it. The heart was left tucked into 

the visceral mass and the branchial membrane was left intact to avoid 

pinching or otherwise constricting flow within the major vessels. 

For experimental manipulations of the heart, the following 

conditions were used: (1) without manipulation (undamaged) to the 

pericardium; (2) slight damage to the pericardium; and (3) severe damage 

to the pericardium. Damage to the pericardium was performed by 

clipping a small hole with scissors in a portion of the central pericardium 

at the proximal end of the myocardial loop (less than 0.5 mm2 area) for 

slight damage, and clipping out a large section of pericardium (over 0.5 

mm2 area) for the severely damaged condition. In all treatments, the 

myocardium was left undamaged and still connected to the pericardium 

via the raphe; the intactness of the myocardium was verified by close 

inspection after damage was inflicted to the pericardium. 

For quantitative measurements of blood speed through the 

myocardial lumen, a micro-liter volume syringe with a 36-gauge needle 

(NF36BV-2, OD: 110  m, World Precision Instruments, Sarasota FL, 
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USA) was inserted into the dorsal blood sinus. Fluorescein dye prepared 

in isotonic seawater (32 ppt) at 30 mg/L was injected into the lumen of 

the myocardium in a 5-7  L bolus when the direction of myocardial 

contractions put the point of injection just upstream from the heart. The 

field was illuminated by a blue light source to increase emission of the 

fluorescent dye. The dye traveled through the lumen of the heart with the 

contraction of the myocardium. The hole produced by the needle was 

small enough that it closed immediately after the needle was removed. 

This process was repeated for animals in all experimental conditions. 

Video was taken of myocardial contractions and a 0.5-mm ruler for scale 

with a Leica Fluorescence Stereo Microscope system (M205 FA, Leica 

Microsystems, Inc., Buffalo Grove, IL, USA) at varying frame rates with 

a green bandpass filter (GFP3, Leica Microsystems, Inc., Buffalo Grove, 

IL, USA). 

Video taken during experiments were used to measure specific 

features of myocardium and relative dye concentration. For kinematic 

measurements of peak dye speed in the myocardium, the position of the 

leading edge of the initial dye bolus was digitized in Graphclick (Arizona 

Software, Inc.) by hand for every other frame during the duration of the 

first contraction after dye injection. Two consecutive positions were used 

to calculate displacement vector of the dye bolus between frames, and the 

time step between every other frame (based on the frame rate of the 

video) was used to calculate velocity. Peak speed was calculated by 

taking the magnitude of each velocity vector for each frame set, and the 

average of these speeds was calculated for all frame sets in the sample. 

This process was repeated three to five times for each animal, and the 

mean of these repetitions was used as mean peak dye speed for each 

animal. 
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To quantify the relative contraction of the myocardium during a 

heart beat, the inner edge of the myocardium was digitized by hand in 

Graphclick during a relaxed state and during a contracted state within the 

period of each heart beat. The contraction ratio was calculated by 

dividing the contracted measurement ( cM ) by the relaxed measurement 

( rM ) (Fig. 1B). This was repeated three times per animal, and the ratios 

were averaged for each animal. Similarly, the length of the myocardium 

was measured in Graphclick by selecting points on the outer edge of the 

myocardial tube between both pacemaking regions of the heart. 

The pericardium-to-myocardium ratio was calculated by measuring 

in Graphclick the width of the pericardium at the proximal-most end of 

the myocardial loop (PD in Fig. 1B) and dividing that with the diameter 

of the relaxed myocardium within the myocardial loop ( rM  in Fig. 1B), 

close to the point at which the pericardium was measured. This 

measurement was repeated once for each animal. 

To measure the heartbeat frequency, the videos were converted to 

grayscale image sequences (see Fig. 3 for two examples). Grayscale 

intensity is a measure for dye intensity, since the bandpass filter restricted 

light capture to wavelengths very close to the emission wavelength of 

fluorescein dye (520 nm) and the maximum concentration of dye within 

the lumen did not wash out the grayscale. Mean grayscale intensities 

(relative dye intensity) were measured in ImageJ over the area of the 

frame containing the heart loop for each video frame. Relative dye 

intensities were graphed in R (Team, 2011) against time and the peaks of 

dye intensity for each heartbeat were selected. The distance between each 

set of peaks was calculated, yielding the heartbeat period, and the 

frequency was calculated as one over the period. The frequencies for each 

set of peaks (5 to 12 heart beats) were average and average to find the 
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mean frequency for each animal. 

Statistical Analysis 

Statistical analysis was performed with the standard statistics and 

car packages in R (Team, 2011; Fox and Weisberg, 2011). Two-way 

analysis of variance tests were used to test for significance between 

groups and trends and their ANOVA F-statistics and degrees of freedom 

(DoF) are reported. Additionally, linear regression analysis was 

performed in R between continuous variables; these are reported with 

slopes, p-values associated with slope, y-intercepts ( 0y ), and adjusted 2R

values. P-values were then corrected using a Bonferroni multiple-

comparison correction; corrected p-values are reported alongside F-

statistics and degrees of freedom. The data were tested for outliers with a 

Bonferroni test for outliers in linear models. 

Immersed Boundary Simulations 

The IB method is an approach to fluid-structure interaction 

problems in which structures are immersed in a viscous incompressible 

fluid (Peskin, 2002). The IB formulation of these problems uses a 

Lagrangian description of the structural deformations and stresses of the 

immersed body and an Eulerian description of the fluid. Integral 

transforms with Dirac delta function kernels couple the Lagrangian and 

Eulerian frames. The equations are descritized, the singular delta function 

is replaced by a regularized version of the delta function. 

The following outline describes the two-dimensional formulation 

of the immersed boundary method, but the three dimensional extension is 

straightforward. For a full review of the method, please see Peskin 

(2002). The equations of fluid motion are given by the Navier–Stokes 

equations: 

2( ( , ) ( , ) ( , )) ( , ) ( , ) ( , )t t t t p t t t      u x u x u x x u x F x (6) 
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( , ) = 0tu x  (7) 

where u(x, t) is the fluid velocity, p(x,t) is the pressure, ( , )tF x  is the force 

per unit area applied to the fluid by the immersed boundary,   is the 

density of the fluid, and   is the dynamic viscosity of the fluid. The 

independent variables are the time t and the position x. 

The interaction equations between the fluid and the boundary are 

given by: 

 ( , ) = ( , ) ( , )t r t r t dr F x f x X (8) 

 ( , ) = ( ( , )) = ( , ) ( , )t r t r t t r t d X U X u x x X x (9) 

where f(r, t) is the force per unit length applied by the boundary to the 

fluid as a function of Lagrangian position and time, ( ) x  is a two-

dimensional delta function, X(r, t) gives the Cartesian coordinates at time 

t of the material point labeled by the Lagrangian parameter r. Eqn 8 

applies force from the boundary to the fluid grid and adds an external 

force term, and Eqn 9 evaluates the local fluid velocity at the boundary. 

The boundary is then moved at the local fluid velocity, and this enforces 

the no-slip condition. The numerical parameters used for the simulations 

are given in Table 2. Unless otherwise noted, all simulations were 

performed on a 512 512  grid. The specific discretization used in this 

paper is described in Peskin and McQueen (1996). 

Force equations are given for tether forces to hold the boundary in 

place, spring forces to resist stretching, and bending forces to resist 

bending. In a simple case where the boundary is to be held in place, 

boundary points are tethered to target points. The equation describing the 

force applied to the fluid by the boundary in Lagrangian coordinates is 

given by: 

 ( , ) = ( , ) ( , )targ targr t k r t r tf Y X  (10) 

where ( , )targ r tf  is the force per unit length, targk  is a stiffness coefficient, 
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and ( , )r tY  is the prescribed position of the target boundary. The 

equations used to determine the forces due to the resistance to stretching, 

( , )str r tf  and ( , )bend r tf  are given as: 

( , )/
( , ) = 1

( , )/
str str

r t r
r t k

r r r t r

      
         

X X
f

X
 (11) 

and 

4

4

( , )
( , ) = .bend

r t
r t EI

r






X
f  (12) 

strk  is a stiffness coefficient that is proportional to the resistance to 

stretching or compression and EI is the flexural stiffness. The total force 

is then the some of these three forces: 

( , ) = ( , ) ( , ) ( , ).targ str beamr t r t r t r t f f f f  (13) 

Womersley number was calculated using the average frequency of 

the undamaged heart ( 10.554s  ), the diameter of the myocardium of 

the undamaged heart ( = 0.8682mmrM ), and the kinematic viscosity of 

seawater ( 5 2 1/ = 5.8 10 m sx    ) using the equation, 

= .rWo M



 (13) 

Wo = 0.3 for simulations other than Wo sweeps. For the study where we 

varied the Wo over several orders of magnitude, the Wo was changed 

using only the dynamic viscosity. 

Flexural stiffness for simulations other than EI sweeps 

( 12 2= 2.3 10 NmEI  ) was chosen based on the second moment of area (I) 

for a flat plate (Wainwright et al., 1982) and Young’s modulus (E) for 

single vertebrate cardiocyte (5 kPa) based on measurements by Mathur et 

al. (2001). Since all boundaries in the simulation are assumed to be 

infinitely thin, the flexural stiffness was simply varied by changing the 

value of EI in equation 12. 
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Abbreviations 

PM — Pericardium-to-myocardium ratio 

rM  — Diameter of relaxed myocardium 

cM  — Diameter of contracted myocardium 

PD — Diameter of pericardium 

v — Dimensionless electropotential 

x — Position along heart tube 

t — Time 

w — Dimensionless blocking potential 

D — Diffusion coefficient of electropotential 

a — Threshold potential 

  — Resetting rate 

  — Strength of blocking 

I — Applied current by pacemaker 

tubeL  — Length of heart tube 

maxI  — Amplitude of applied current 
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T — Period of pulse 

dp — Duration of applied current 

mk  — Resting length of springs 

maxk  — Maximum effective stiffness of springs 

sk  — Spring stiffness 

Wo — Womersley number 

EI — Flexural stiffness of myocardium 

E — Young’s modulus 

  — Heartbeat frequency 

OD — Outer diameter 

u — Fluid velocity 

p — Fluid pressure 

  — Fluid dynamic viscosity 

  — Fluid density 

x — Position in fluid grid 

f — Force per unit length 

( ) x  — Two-dimensional Dirac delta function 

r — Lagrangian position parameter 

I — Second moment of area 

targf  — Force per unit length 

( , )str r tf  and ( , )bend r tf  — Forces due to resistance to stretching and 

bending 

targk  — Stiffness coefficient 

( , )r tY  — prescribed position of target boundary 

0y  — y-intercept of linear regression 

2R  — Correlation coefficient of linear regression 
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Figures 

Figure 1: A: Adult tunicate Ciona savignyi Herdman, scale = 1 cm. 

B: Diagram of the heart morphology of C. savignyi, scale = 1 mm. 

Morphology: Pc - outline of pericardium (white), Myo - outline 

myocardium (gray), Lu - heart lumen, Da - dorsal blood sinus. 

Measurements: PD - Pericardium diameter, Mc - contracted myocardium 

diameter, Mr - relaxed myocardium diameter. 
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Figure 2: A. Box plot of heart beat frequency (Hz) versus versus 

pericardium damage: control/undamaged (black) and damaged (dark 

gray) conditions. B. Box plots of peak dye speed (mm s–1) of the leading 

edge of a dye bolus versus pericardium damage. Significance: “*” for 

= 0.05 . C. Contraction ratio versus pericardium-to-myocardium (PM) 

diameter ratio, colored by condition. Linear regression: (slope =–0.25, 

p=0.002, 0 = 0.87y , adjusted 2 = 0.48R ). D. Peak dye speed versus PM 

diameter ratio, colored by condition. Linear regression: (slope=8.5, 

7= 7 10p  , 0 = 12.7y  , adjusted 2 = 0.85R ). 
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Figure 3: Panel images showing dye passing through heart after 

injection. A-D: Undamaged pericardium at A: 0 s, B: 0.7 s, C: 1.3 s, and 

D: 2.1 s after dye injection showing a dye bolus (light red) passing 

through the lumen. E-H: Severely damaged pericardium at E: 0 s, F: 0.7 s, 

G: 1.6 s, and H: 2.6 s after dye injection showing dye (light red) 

appearing and staying in heart after injection. In each panel, the edge of 

the pericardium is traced with a white line. Dotted lines show leading 

edge of dye boli. 
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Figure 4: Diagram of the computational set up for the racetrack 

model. rM  is the diameter of the contracting myocardium, PD is the 

diameter of the pericardium, tubeL  shows the length of the heart (both the 

contracting myocardium and pericardium), the dashed line marked E 

shows the portion of the contracting tube that is excitable, and the 

transparent white area marked with an asterisk (*) identifies the 

pacemaker area where contractions originate. 
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Figure 5: Images from simulations without (A-C) and with (D-F) a 

pericardium (in grey) at time steps: 2.3 s (A,B), 4.5 s (B,E), and 6.8 s 

(C,F). White marker particles indicate fluid packet positions along the 

racetrack. Background shading is vorticity. Axes labels are in mm. Th
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Figure 6: A,C,E: Mean (circles) and Peak (triangles) flow speed in 

mm s–1 against parameter. B,D,F: Mean flow speed to peak flow speed 

ratio versus parameter. A-B: Heartbeat frequency in s–1; C-D: Womersley 

number; E-F: EI. White fill indicate the pericardium is present and black 

fill indicates no pericardium is present. 
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Figure 7: Pressures (in mPa) from racetrack simulations: average 

pressure (squares), average maximum pressure (inverted triangles), 

average minimum pressure (triangles), and average maximum pressure 

difference (diamonds). A. Pressure versus pericardium-to-myocardium 

diameter ratio for simulations with a pericardium (open markers). 

Pressures from simulations with a hole in the pericardium (gray markers) 

and no pericardium (black markers) are included at PM=2.4. B. Pressures 

versus Womersley number for simulations run with a pericardium (open 

markers) and with no pericardium (black markers). 
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Figure 8: A. Mean (circles) and peak (triangles) flow speed in mm 

s–1 versus pericardium- to-myocardium diameter ratio. B. Comparison of 

peak dye speed values from experimental manipulations (Fig. 2D) and 

peak flow speed values from simulations varying pericardium- to-

myocardium diameter ratio. 
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Tables 

Table 1: Table of physical and electromechanical parameters for 

the heart tube model. Note that all of the parameters for the 

electrophysiology model are dimensionless. Space is scaled by the length 

of the active contraction region and time is scaled by the pumping period. 

Parameter Abbreviation Units Value 

Elastic section tubeL meters 37.91 10

Diameter d meters 46.957 10

Radius bend 1R meters 32.4 10

Contraction frequency beatf seconds–1 0.5554 

Density   3/kg m 1025 

Dynamic viscosity   2/Ns m 31.002 10

Flexural stiffness EI 2Nm 122.3 10

Stretching stiffness sk 1Nm 84.12 10

Diffusion coefficient electropotenital D - 0.023 

Threshold potential a - 0.3 

Resetting rate   - 0.5 

Blocking strength   - 0.01 

Maximum applied current maxI - 0.75 

Period between start of pulses T - 1 

Duration of pulse dp - 0.005 
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Table 2: Table of numerical parameters for the heart tube model. 

Parameter Abbreviation Units Value 

Spatial step dx meters 52.93 10

Boundary step ds meters 51.47 10

Temporal step dt seconds 51.36 10

Physical domain L meters 21.5 10
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