J Exp Biol Advance Online Articles. First posted online on 7 March 2013 as doi:10.1242/jeb.085712 Access the most recent version at http://jeb.biologists.org/lookup/doi/10.1242/jeb.085712

1 2	Estimating physiological tolerances– a comparison of traditional approaches to nonlinear regression techniques
3	
4	Dustin J. Marshall ^{*1} , Michael Bode ² & Craig R. White ³
5	*Correspondence: Dustin.Marshall@monash.edu
6	¹ School of Biological Sciences, Monash University, Victoria, 3800,
7	² Department of Botany, University of Melbourne, Victoria, 3052
8	³ School of Biological Sciences, University of Queensland, Queensland, 4072
9	

Summary: Traditionally, physiologists have estimated the ability of organisms to withstand 10 11 lower partial pressures of oxygen by estimating the partial pressure at which oxygen consumption begins to decrease (known as the 'critical Po_2 ' or ' P_c '). For almost 30 years, the 12 principal way in which P_c has been estimated has been via piecewise 'broken stick' regression. 13 Broken stick regression (BSR) was a useful approach when more sophisticated analyses were 14 15 less available, but BSR makes a number of unsupported assumptions about the underlying form 16 of the relationship between the rate of oxygen consumption and oxygen availability. The BSR approach also distils a range of values into a single point with no estimate of error. In 17 accordance with more general calls to fit functions to continuous data, we propose the use of 18 nonlinear regression (NLR) to fit various curvilinear functions to oxygen consumption data in 19 order to estimate P_{c} . Importantly, our approach is back-compatible so that estimates using 20 21 traditional methods in earlier studies can be compared to data estimates from our technique. 22 When we compared the performance of our approach relative to the traditional BSR approach for real world and simulated data, we found that under realistic circumstances, the NLR was 23 24 more accurate and provided more powerful hypothesis tests. We recommend that future 25 studies make use of NLR to estimate P_c, and also suggest that this approach might be more appropriate for a range of physiological studies that use BSR currently. 26

28

Introduction

E
8
2
U.
Š
Z
\mathbf{A}
7
R MANUSC
Ř
$\mathbf{\Sigma}$
щ
E
2
4
Ω
Ш
E-
붠
R
\cup
~
A.
Ч- Ч
\geq
ogy
\geq
iology
ogy
iology
perimental Biology
iology
perimental Biology

30	Understanding the physiological tolerances of an organism to its environment has long
31	been a focus of ecophysiology. Oxygen is a fundamental requirement of most organisms, and its
32	availability may be limiting across a range of habitats (Portner, 2010; Verberk et al., 2011;
33	Ferguson et al. in press). For over 30 years, measures of oxygen tolerance have accumulated in a
34	wide variety of taxa with variation evident at a range of scales (Greenlee and Harrison, 2004a;
35	Mueller and Seymour, 2011; Lease et al., 2012; Ferguson et al., in press). Surprisingly, no clear
36	consensus over how to estimate oxygen tolerance exists, and for the most part, modern
37	statistical approaches have not been brought to bear on this problem.
38	The most common estimate of oxygen tolerance is the critical partial pressure of oxygen
39	for aerobic metabolism (P_c), which represents the lowest level of oxygen at which aerobic
40	metabolism is independent of the ambient partial pressure of oxygen (<i>P</i> o ₂ ; Hochachka and
41	Somero, 2002). At levels of Po_2 below P_c , either metabolism cannot be supported by aerobic
42	processes entirely, and metabolic rate decreases; and/or anaerobic processes that are relatively
43	inefficient and produce potentially toxic end-products become increasingly important
44	(Hochachka and Somero, 2002). The original method for estimating $P_{\rm c}$ is the 'broken stick'
45	regression (BSR) approach (Yeager and Ultsch, 1989) – an approach that remains the most
46	common today. The broken stick approach to estimating $P_{ m c}$ has been applied in a range of
47	contexts, and been used to demonstrate, for example, that the $P_{\rm c}$ of a species is generally

48 matched to the minimum oxygen level encountered in the environment in which it lives

49 (Childress and Seibel, 1998; Nilsson, 2007; Ferguson et al., in press), and that mobile species

show behavioural avoidance of oxygen levels below their P_c (Burleson et al., 2001).

51 Nonetheless, not all species show clear break points in the relationship between rate of oxygen

52 consumption (\dot{V}_{0_2}) and P_{0_2} , which complicates efforts to assess the regulatory ability these

53 species (Mueller and Seymour, 2011).

54	The traditional broken stick regression approach (piecewise linear regression) makes a
55	number of unsupported assumptions about the underlying relationship between oxygen
56	availability and respiration rate. First, it assumes that the functional response of an organism to
57	decreasing partial pressures of oxygen is biphasic, that is, it consists of two linear elements with
58	a clear break between these two phases. Above $P_{\rm c}$, $\dot{V}_{\rm O_2}$ is assumed to be characterised by a linear
59	function that is completely flat, while below $P_{\rm c},~{ m \dot{W}}_2$ decreases linearly with $P_{ m O_2}$ with an abrupt
60	transition between these two functions (Chiu et al., 2006). Of course, in reality, rates of
61	respiration are likely to be a continuous function between these two phases, and furthermore,
62	concentration-dependent reaction kinetics make a linear relationship between \dot{V}_{0_2} and P_{0_2}
63	highly unlikely. As such, the broken stick regression approach does not reflect the underlying
64	structure of the data, violating the basic assumptions of the regression approach (Quinn and
65	Keough, 2002). Our discussion here should not be taken as a criticism of the original
66	progenitors of these approaches: when they were developed, those analyses represented the
67	best approach available with the statistical and computational tools of the time. Today,
68	however, more sophisticated approaches are available that better reflect the underlying
69	processes that generated the data.
70	Since the development of the BSR technique, there have been a number of other ways in
71	which authors have attempted to estimate $P_{\rm c}$. These approaches have largely been subjective

which authors have attempted to estimate $P_{\rm c}$. These approaches have largely been subjective /1 and lack repeatability (e.g. Portner et al., 1991; Greenlee and Harrison, 2004a, b, Lease et al., 72 73 2012). Ideally, any technique for estimating P_c should both represent the mechanistic process by which the data were generated and be repeatable. More generally, there are compelling 74 75 reasons for describing continuous traits with functional relationships, rather than taking 76 isolated point measures (Stinchcombe and Kirkpatrick, 2012). For example, Mueller and Seymour (2011) fit a nonlinear function to estimate the ability of organisms to regulate oxygen 77 78 consumption beyond simple oxy-conformity across a range of oxygen values: they propose a 79 'Regulation Index', which estimates a relative measure of oxyregulatory ability using either

80	linear, quadratic $[y = a + bx + cx^2]$ or one-phase association $[y = y_0 + (y_{max} - y_0)(1 - e^{-kx})]$ fits).
81	Here, we apply a similar logic for estimating P_c that meets the above criteria – a nonlinear
82	regression approach coupled with simple differential calculus. We then evaluate the
83	performance of this new method relative to the most widely used approach to date, BSR, across
84	real-world data and explore a broader parameter space using simulations to compare the
85	sensitivity and reliability of these two approaches. Finally, we examine the statistical power of
86	the two techniques to distinguish differences in oxygen tolerance among groups.

87

Methods 88

Fits to published data 89

After examining the form of many published relationships between V_{0_2} and P_{0_2} , we 90 settled on six candidate functions that approximated the general relationship well and were 91 92 reasonably tractable analytically (Table 1). While other forms could also fit the data and we encourage investigators to explore alternatives (e.g. a power function with an intercept), we 93 94 chose these forms as, on first inspection, they appeared to fit real world data reasonably well and consistently. We used standard nonlinear regression to fit these functions to published data. 95 96 It is beyond the scope of this paper to describe the general theory and approach of nonlinear regression but we recommend Quinn and Keough (2002; pg 150) for a general introduction and 97 98 Ritz and Streibig (2008) for an excellent primer in how to implement this analysis in the freely 99 available statistical software R (R Development Core Team 2012). The nonlinear regression analysis provides estimates of between two and four parameters (or even more if a selected 100 101 function has more): with these values the relationship between $\dot{V}O_2$ and PO_2 can be visualised. 102 For ease of use and comparison among studies, however, a single metric that best represents P_c is desirable. Such a metric must be repeatable and objective. We based our metric on the 103 underlying principles of what P_c seeks to describe: the point where \dot{V}_{0_2} is no longer strongly 104

106 approach zero. As the absolute values of a slope will vary according to the maximum oxygen 107 consumption rate of that particular organism, we first standardised our data by the maximum 109 value and compare where that value occurs among individuals, species and studies. 110 The slope across function is, of course, given by the first derivative of the original function and

111 the derivative for each function is shown in Table 1. After rearranging we can solve for the 112 partial pressure P_{c_1} at which any slope value (here, denoted m), and these are shown in Table 1. 113 We explored a range of values of m and found that a slope of m = 0.065 best approximates P. 114 such that the solved values for P_c are shown in Table 2. 115

We coupled this formula to our nonlinear regression (NLR) estimates of a, b, c and d as 116 117 appropriate to estimate the value of $P_{\rm C}$ for a range of published data from the literature (see Table 2). NLR relationships with additive error structures were fitted using the 'nls' function in 118 119 R v2.15.0 (R Development Core Team 2012), and NLR relationships with multiplicative error 120 structures were fitted using the 'gnls' function. The NLR and BSR fits to each data set were then 121 compared on the basis of Akaike's Information Criterion as a measure of model fit; the fit with the lowest AIC was considered the best of the candidate set of models, given the data (Burnham 122 123 and Anderson 2008). We then also compared the performance of the NLR approach to the 124 broken stick method across a range of parameter values to evaluate how each approach coped with differences in variation and sampling resolution with a simulation approach. 125

126 Simulation methods

We explored the influence of a suite of characteristics of the relationship between V_{02} and P_{02} 127 128 on NLR- and broken stick regression (BSR) derived estimates of $P_{\rm c}$ using Monte Carlo

simulations. We began by generating a function relating $\dot{V}O_2$ to PO_2 that was explicitly biphasic, 129

affected by Po_2 . In other words, when the slope of the function begins to flatten out and

 \dot{V}_{0_2} observed for any set of values (\dot{V}_{0_2} max = 1). By standardising, we can choose one slope 108

130	incorporating two linear portions (one that increased with Po_2 until $Po_2 = P_c$, and a second that
131	was independent of Po_2 at Po_2 levels greater than P_c). P_c was set at 5 kPa and Vo_2 above P_c was
132	set at 1. We then repeatedly simulated the process of sampling these data, and estimating the
133	value of Pc by fitting both the BSR and NLR. We elected to use a biphasic function because it
134	reflects the underlying assumption of the BSR approach, and because fitting such data should
135	represent the greatest challenge to NLR. Put simply, if NLR outperforms BSR, even when the
136	function is biphasic, then there can be little justification for preferring BSR over NLR, and as
137	such our approach was highly conservative. We sampled the relationship between $\dot{V}O_2$ and PO_2
138	at a range of resolutions (0.125, 0.25, 0.5, 1 kPa). To each \dot{V}_{0_2} , we then added a normal deviate
139	with a mean of zero and coefficient of variation (= s.d. divided by \dot{V}_{0_2}) of 0.025, 0.05, 0.1, 0.15, or
140	0.20. These values for the CV of \dot{V}_{0_2} were selected to span the range of observed values of CV in
141	real data (n = 10, mean = 0.09, range: 0.04 – 0.21; See references in Table 1). 1000 such data
142	sets were generated for each combination of sampling resolution and CV, and $P_{\rm c}$ was estimated
143	using both NLR and BSR techniques. NLR estimates of $P_{\rm c}$ were derived as described above by
144	fitting a Weibull function to each data set (excluding that of Cryptobranchus as the model would
145	not converge) using the 'nls' function in R v2.15.0 (R Development Core Team 2012) to obtain a
146	non-linear least squares fit using a Gauss-Newton algorithm. We used the Weibull function as
147	this function best fit the most published relationships in the literature (see Results). BSR
148	estimates of P_{c} were obtained by simultaneously fitting two linear regressions constrained to
149	meet at a specified Po_2 , Pc. The slope of the linear regression below the specified P_c was a free
150	parameter, whereas the slope above the specified Po_2 was set at zero. Beginning at the third-
151	lowest Po_2 in the data set, a series of specified values of Po_2 were trialled, with each successive
152	Po_2 being 0.01 kPa greater than the last until the third highest Po_2 in the data set was reached.
153	The value of the <i>P</i> o ₂ break point that minimised the sum of squared deviations from the
154	biphasic function was considered to represent $P_{\rm c}$.

Testing for differences among groups

56	We compared the ability of our best fitting NLR and BSR to identify differences among groups
57	that differ in P_c with Monte Carlo Simulations. For two groups of 6 simulated datasets, each
58	with Po_2 values sampled at 1 kPa resolution, we generated a relationship between $\dot{V}o_2$ and Po_2
59	that included a break point (P_c) at either 6.5 kPa (group 1) or 8.5 kPa (group 2). As a
60	conservative measure, these values of $P_{\rm c}$ were deliberately chosen to be different from the $P_{\rm c}$ at
61	which NLR performs best. As above, for each data set \dot{V}_{0_2} increased linearly with P_{0_2} to equal 1
62	when $Po_2 = P_c$. For values of Po_2 above P_c , $\dot{V}O_2$ was independent of Po_2 and equal to 1. To each
63	value of \dot{W}_2 we then added a normal deviate with a mean of zero and coefficient of variation (=
64	s.d. divided by \dot{V}_{0_2}) of 0.10. We then estimated P_c for each of the data sets using BSR or NLR with
65	m = 0.065, and tested for differences among groups using t tests. We also tested for differences
66	among groups using the best fitting NLR regression by pooling data sets for each group, and
67	testing for the significance of a fixed grouping factor using likelihood ratio tests. This simulation
68	procedure was repeated 1000 times, and statistical power was estimated by calculating the
69	proportion of tests that reported a significant difference among groups with $lpha$ set at 0.05.

Results

172 Fits to published data

173	Both techniques provide a good fit to real-world data (Figure 1), and the predicted $P_{ m C}$
174	based on NLR was strongly correlated with the $P_{\rm C}$ estimates based on BSR (R ² = 0.82, n = 13, P <
175	0.001), though the relationship was not precisely one to one (Regression equation: $P_{c(NLR)}$ =
176	0.646 x $P_{c(BSR)}$ + 1.12). Neither consistently over- or under-estimated the other, rather the
177	relationship between the two was idiosyncratic (Figure 2). In eight out the 13 cases, the NLR

approach provided a better fit to the data than did the BSR approach (Table 2). For the
remaining 5 cases where the BSR approach had a lower AIC, the differences in AIC between the
BSR and NLR approaches were equivocal (ΔAIC around 2) in two cases. For nine out of thirteen
of the cases, the Weibull function (either with or without an intercept) provided a better fit to
the data than any other nonlinear function. For the four remaining cases, each of the other four
nonlinear functions provided the best fit for one case, suggesting that all should be considered
candidate functions in future studies.

185 Simulations

186 The best fitting NLR was far more robust to variation in the data than was the BSR (Figure 3). While both performed well when variation was very low and sampling resolution 187 very high, the broken stick technique was far more likely to dramatically misestimate $P_{\rm C}$ when 188 189 variance was high. The NLR also coped with lower sampling resolution relative to the BSR: at sampling resolutions greater than 0.5 kPa, the error rate of the BSR increased dramatically with 190 191 this approach being far more likely to misestimate $P_{\rm C}$. For the BSR, the effects of sampling 192 resolution and error interacted such that the most error-prone estimates came from simulated 193 data with high levels of variation and low sampling resolutions (Figure 3). In contrast, neither 194 resolution nor variation had strong effects on the error rate of the NLR technique.

195 *Testing for differences among groups*

Power to detect differences among groups was lowest for *t*-tests comparing BSR-derived estimates of P_c (0.63), and was higher for *t*-tests comparing best NLR-derived estimates of P_c (0.74); power was also relatively higher for comparisons of pooled data made using likelihood ratio tests (0.83).

200

203 For both real-world and simulated data, a nonlinear regression (NLR) approach to 204 estimating tolerance to decreasing availability to oxygen was superior to a broken stick 205 regression (BSR) approach in almost every regard. The NLR approach was more robust to 206 variation in the data and reductions in sampling resolution, as well as offering a more powerful means of detecting differences between groups. Our simulations suggest that BSR has a 207 208 tendency to overestimate P_c when data are variable, sampling resolutions are low and the 209 underlying 'true' $P_{\rm c}$ is low. It is possible therefore that some species may be more tolerant to low 210 oxygen conditions than is currently appreciated. NLR performed less well in simulations when 211 the underlying P_c was close to the highest P_c measured in the study and in this instance, BSR was a more accurate indicator of the $P_{\rm C}$. The poor performance of NLR in this parameter space was 212 213 due to the relationship between \dot{V}_{0_2} and P_{0_2} being linear in our simulations (recall that we used 214 an artificially biphasic function) and as such, it was inevitable that the nonlinear function fit the 215 data poorly. We therefore favour the use of NLR over BSR despite this shortcoming because in nature, very high $P_{\rm C}$ s are very rare, and genuinely linear relationships between \dot{V}_{0_2} and P_{0_2} are 216 similarly rare. Nevertheless, we suggest that visual inspections of the data be conducted before 217 218 $P_{\rm c}$ s are estimated and on the rare occasions when the relationship between Vo₂ and Po₂ appears 219 to be linear, linear regression be used instead of NLR. In other words, as for any statistical 220 model fitting exercise, the underlying form of the relationship should dictate the form of the 221 model that is fit (Quinn and Keough, 2002). 222 The use of NLR to estimate tolerance to low oxygen carries the additional advantage of

allowing formal testing for differences among groups within the same statistical framework. Traditionally, comparisons of P_c among species, individuals or groups have involved estimating P_c s within groups using the BSR approach, using these estimates of P_c as individual data points and then using a separate statistical test to detect differences (e.g. Ferguson et al., in press). There are a number of disadvantages to this two-stage approach. First, estimating the P_c as a

Discussion

228 summary statistic for the entire function results in significant loss of information – essentially, a 229 large amount of data is collected to estimate a single point, and then the bulk of the data are 230 ignored in the hypothesis test (Stinchcombe and Kirkpatrick, 2012). Second, using the P_c 231 summary statistic ignores error and variance associated with this estimate, the subsuming of 232 error will result in hypothesis tests that are more susceptible to Type I errors (Hadfield et al., 233 2010). In contrast, formal hypothesis tests of differences across entire functions among groups 234 allow the use of the full complement of data that were collected as well as incorporating the 235 appropriate error into the hypothesis test of interest (Stinchcombe and Kirkpatrick, 2012). 236 Furthermore, the NLR method could be extended to include random effects, whereby error 237 associated with different experimental equipment or different measurement days could be partitioned, increasing the sensitivity of this analytical approach and providing much greater 238 239 scope to incorporate additional factors.

240

241 As well as the statistical advantages described above, the use of NLR affords practical 242 advantages for comparisons among studies and meta-analyses. For example, studies from different research groups may not sample \dot{V}_2 at identical values of Po_2 and may sample with 243 244 different resolutions. Our simulations show that differences in sampling resolution will result in 245 systematic differences in the estimate of $P_{\rm c}$ and furthermore, the estimate of $P_{\rm c}$ will be a product of the Po_2s at which Vo_2 was measured. In contrast, an NLR approach is robust to these 246 247 differences in sampling regime, allowing more comparable estimates of P_c among studies, as well as estimates of \dot{W}_2 across a greater parameter space. Furthermore, no single function fit the 248 249 data best such that comparisons among studies could be problematic. The retention of an 250 estimate of P_c in the context of our approach provides a means of comparing equivalent slopes 251 among studies that have fit very different functions.

253	We chose a point (where $dV/dP = m = 0.065$) on our function that best approximated the
254	$P_{ m c}$ estimated by the BSR approach. We chose this point so that future studies can provide
255	estimates of oxygen tolerance that are comparable with traditional measures of P_{C} . In practice,
256	we recommend that future studies that utilise the NLR approach present estimates of not only
257	P_{c} , but also estimates of function parameters (i.e. estimates of a , b , c and d , as appropriate), as
258	well as their associated error, as these values will allow comparisons across the entire range of
259	oxygen partial pressures. Standardised estimates of parameters in selection in evolutionary
260	biology have facilitated important insights from meta-analyses (Kingsolver et al., 2001), and we
261	hope similarly valuable insights might become available via the widespread use of the
262	standardised approach we recommend here.
263	The use of approaches such as BSR to estimate biological 'thresholds' in nonlinear
264	responses more generally is increasingly being scrutinized. The estimation of ecological
265	thresholds using BSR techniques has been called into question (Toms and Lesperance, 2003), as
266	has the distillation of continuous functions into single points in evolutionary studies
267	(Stinchcombe and Kirkpatrick, 2012). Generally, the failure to use nonlinear functions to
268	describe nonlinear traits results in less powerful, less accurate estimates (Griswold et al., 2008).
269	BSR techniques are also used to estimate changes in developmental rates across temperatures
270	(Stanwell-Smith and Peck, 1998), as well as cardinal temperatures (estimates maximum,
271	minimum and optimal temperature), and we suspect that NLR techniques may be more
272	appropriate in these settings as well. While BSR techniques were once a pragmatic recognition
273	of limited computing power and statistical programming, today we have unprecedented access
274	to powerful statistical estimation techniques with freely available statistical software. We join
275	others (Stinchcombe and Kirkpatrick 2012) in calling for the increased uptake of 'function
276	valued' approaches to estimating continuous traits such as the relationship between $\dot{ m Vo}_2$ and Po_2 .
277 278 279	Acknowledgements : We thank Hayley Cameron, Amy Hooper, Marcelo Lagos Orostica and Matthew Thompson for help in preparing the manuscript. Two anonymous reviewers provided extremely thoughtful and helpful comments that improved the manuscript.
280	Funding: DIM, MB and CRW are all supported by grants from the Australian Research Council.

Funding: DJM, MB and CRW are all supported by grants from the Australian Research Council. 280

281 282	Literature Cited
283	Burleson, M.L., Wilhelm, D.R. & Smatresk, N.J. (2001) The influence of fish size on the avoidance
284	of hypoxia and oxygen selection by largemouth bass. <i>Journal of Fish Biology</i> , 59 , 1336-
285	1349.
286	Burnham, K. P. & D. R. Anderson (2008) <i>Model selection and multi-model inference: a practical</i>
287	<i>information-theoretic approach</i> . 2nd edition. Springer, New York
288	Cassin, S. (1963) Critical oxygen tensions in newborn, young and adult mice. American Journal of
289	Physiology, 205 , 325-330.
290	Childress, J.J. & Seibel, B.A. (1998) Life at stable low oxygen levels: adaptations of animals to
291	oceanic oxygen minimum layers. Journal of Experimental Biology, 201 , 1223-1232.
292	Chiu, G., Lockhart, R. & Routledge, R. (2006) Bent-cable regression theory and applications.
293	Journal of the American Statistical Association, 101 , 542-553.
294	Ferguson, N., White, C.W & Marshall, D.J. (in press) Competition in benthic marine invertebrates:
295	the unrecognised role of exploitative competition for oxygen. <i>Ecology</i> .
296	Greenlee, K.J. & Harrison, J.F. (2004a) Development of respiratory function in the American
297	locust Schistocerca americana I. Across-instar effects. Journal of Experimental Biology,
298	207 , 497-508.
299	Greenlee, K.J. & Harrison, J.F. (2004b) Development of respiratory function in the American
300	locust Schistocerca americana II. Within-instar effects. Journal of Experimental Biology,
301	207 , 509-517.
302	Griswold, C.K., Gomulkiewicz, R. & Heckman, N. (2008) Hypothesis testing in comparative and
303	experimental studies of function-valued traits. <i>Evolution</i> , 62 , 1229-1242.
304	Hadfield, J.D., Wilson, A.J., Garant, D., Sheldon, B.C. & Kruuk, L.E.B. (2010) The Misuse of BLUP in
305	Ecology and Evolution. <i>American Naturalist</i> , 175 , 116-125.
306	Hochachka, P.W. & Somero, G.N. (2002) <i>Biochemical Adaptation: Mechanism and Process in</i>
307	Physiological Evolution. Oxford University Press, New York.
308	Kingsolver, J.G., Hoekstra, H.E., Hoekstra, J.M., Berrigan, D., Vignieri, S.N., Hill, C.E., Hoang, A.,
309 310	Gibert, P. & Beerli, P. (2001) The strength of phenotypic selection in natural populations.
311	<i>American Naturalist</i> , 157 , 245-261. Lease, H.M., Klok, C.J., Kaiser, A. & Harrison, J.F. (2012) Body size is not critical for critical PO ₂ in
312	scarabaeid and tenebrionid beetles. <i>Journal of Experimental Biology</i> , 215 , 2524-2533.
313	Mickel, T.J. & Childress, J.J. (1982) Effects of pressure and pressure acclimation on activity and
314	oxygen consumption in the bathypelagic mysid <i>Gnathophausia ingens</i> . <i>Deep-Sea</i>
315	Research Part a-Oceanographic Research Papers, 29 , 1293-1301.
316	Mueller, C.A. & Seymour, R.S. (2011) The Regulation Index: a new method for assessing the
317	relationship between oxygen consumption and environmental oxygen. <i>Physiological and</i>
318	Biochemical Zoology, 84 , 522-532.
319	Nilsson, G.E. (2007) Gill remodeling in fish - a new fashion or an ancient secret? <i>Journal of</i>
320	Experimental Biology, 210 , 2403-2409.
321	Peck, L.S., Portner, H.O & Hardewig, I. 2002. Metabolic demand, oxygen supply, and critical
322	temperatures in the antarctic bivalve Laternula elliptica. Physiological and Biochemical
323	Zoology, 75 , 123-133.
324	Portner, H.O. (2010) Oxygen- and capacity-limitation of thermal tolerance: a matrix for
325	integrating climate-related stressor effects in marine ecosystems. Journal of
326	Experimental Biology, 213 , 881-893.
327	Portner, H.O., Maclatchy, L.M. & Toews, D.P. (1991) Metabolic responses of the toad bufo
328	<i>marinus</i> to environmental hypoxia: an analysis of the critical PO ₂ . <i>Physiological Zoology</i> ,
329	64 , 836-849.
330	Quinn, G.P. & Keough, M.J. (2002) Experimental design and data analysis for biologists.
331	Cambridge University Press, Cambridge.
332	Ritz, C. & Streibig, J.C. (2008) Nonlinear regression with R. Springer Science+Business Media,

332 Ritz, C. & Streibig, J.C. (2008) Nonlinear regression with R. Springer Science+Business Media,

- Stanwell-Smith, D. & Peck, L.S. (1998) Temperature and embryonic development in relation to
 spawning and field occurrence of larvae of three Antarctic echinoderms. *Biological Bulletin*, 194, 44-52.
- Steffensen, J.F., Schurmann, H. & Bushnell, P.G. (1994) Oxygen consumption in four species of
 teleosts from Greenland: no evidence of metabolic cold adaptation. *Polar Biology*, 14, 49 54.
- Stinchcombe, J.R. & Kirkpatrick, M. (2012) Genetics and evolution of function-valued traits:
 understanding environmentally responsive phenotypes. *Trends in Ecology and Evolution*,
 27, 637-647.
- Toms, J.D. & Lesperance, M.L. (2003) Piecewise regression: a tool for identifying ecological
 thresholds. *Ecology*, 84, 2034-2041.
- Ultsch, G.R., Ott, M.E & Heisler, N. (1980) Standard metabolic rate, critical oxygen tension and
 aerobic scope for spontaneous activity of trout (*salmo gairdneri*) and carp (*cyprinus carpio*) in acidified water. *Comparative Biochemistry and Physiology Part a-Physiology*,
 67, 329-335.
- Verberk, W., Bilton, D.T., Calosi, P. & Spicer, J.I. (2011). Oxygen supply in aquatic ectotherms:
 partial pressure and solubility together explain biodiversity and size patterns. *Ecology*,
 92, 1565-1572.
- Yeager, D.P. & Ultsch, G.R. (1989) Physiological regulation and conformation: a basic program
 for the determination of critical points. *Physiological Zoology*, 62, 888-907.

354 355 356 357 358	Figure 1. Relationship between partial pressure of oxygen (PO_2) and oxygen consumption (VO_2) for a) <i>Necturus maculosus</i> (y-axis shows μ Lg ⁻¹ .h ⁻¹) and b) <i>Crinia georgiani</i> tadpoles (y-axis shows nanomoles.h ⁻¹). Line shows predicted line of best fit from nonlinear regression (NLR), dashed lines show lines of best fit from broken stick regression (BSR) red and blue lines show critical oxygen value (P_c) as estimated by BSR and NLR approaches respectively.
359	
360 361	Figure 2. The relationship between P_c calculated using nonlinear regression and broken stick regression approaches. Each point represents a separate species.
362	
363 364 365	Figure 3. Effect of sampling resolution and variation in the underlying data on the standard error of the estimates of <i>P</i> _c for: a) broken stick regression; and b) Nonlinear regression approaches.
366	
367	
368	
369	
370	
371	
372	
373	
374	
375	

Table 1. Compilation of functions (and their derivatives) fit to relationships between partial
 pressure of oxygen (*P*O₂) and oxygen consumption (VO₂) where *a*,*b* and c are constants to be

³⁸⁰ calculating critical oxygen value (P_c).

	Function	Derivative	Critical oxygen partial pressure
Michaelis-Menten	$\dot{V}_{O_2} = \frac{aP_{O_2}}{b + P_{O_2}}$	$\frac{d\dot{V}_{O_2}}{dP_{O_2}} = \frac{ab}{\left(P_{O_2} + b\right)^2}$	$P_c = \sqrt{\frac{ab}{m}} - b$
Power	$\dot{V}_{O_2} = a P_{O_2}{}^b$	$\frac{dV_{O_2}}{dP_{O_2}} = abP_{O_2}^{b-1}$	$P_c = \left(\frac{m}{ab}\right)^{\frac{1}{b-1}}$
Hyperbola	$\dot{V}_{O_2} = \frac{aP_{O_2}}{b + P_{O_2}} + c$	$\frac{d\dot{V}_{O_2}}{dP_{O_2}} = abP_{O_2}^{-b-1}$	$P_c = \sqrt{\frac{ab}{m}} - b$
Pareto	$\dot{V}_{0_2} = 1 - \left(aP_{0_2}\right)^b$	$\frac{d\dot{V}_{O_2}}{dP_{O_2}} = a^b b P_{O_2}^{b-1}$	$P_c = \left(\frac{m}{a^b b}\right)^{\frac{1}{b-1}}$
Weibull	$\dot{V}_{O_2} = a \left(1 - e^{-\left(\frac{P_{O_2}}{b}\right)^c} \right)$	$\frac{d\dot{V}_{O_2}}{dP_{O_2}} = a\left(\frac{c}{b}\right) \left(\frac{P_{O_2}}{b}\right)^{(c-1)} e^{-\left(\frac{P_{O_2}}{b}\right)^c}$	See note
Weibull with intercept	$\dot{V}_{0_2} = a \left(1 - e^{-\left(\frac{p_{0_2}}{b}\right)^c} \right) + d$	$\frac{d\dot{V}_{O_2}}{dP_{O_2}} = a\left(\frac{c}{b}\right) \left(\frac{P_{O_2}}{b}\right)^{(c-1)} e^{-\left(\frac{P_{O_2}}{b}\right)^c}$	See note

381Note: Because there is no unique P_c for any given vale of m in the Weibull functions, P_c is estimated382numerically for these functions by finding the value of PO_2 closest to the highest in the data set where the383calculated derivative is equal to m.

385

386

³⁷⁸ estimated. All have approximately similar forms and all fit published data reasonably well. We

also present the function for calculating a particular slope (m – see main text for details) for

388 Table 2. Compilation of estimates of fit (AIC values shown in italics) for both broken stick regression and nonlinear regression for a range of

389 candidate functions. Note that models with both additive or multiplicative error were fit to each relationship and the AIC values for each are shown

here. Columns on the right show the estimated critical oxygen value (P_c) for both the BSR approach and the best fitting NLR approach. Lowest AIC

values are shown in**bold**as are the estimated P_c from the best fitting model. 'NA' indicates that model would not converge and no estimate could be

392 made.

		AlC value												Summary	
	Study	Michaelis - Menten		Power		Hyperbola		Pareto		Weibull		Weibull with intercept		Pcrit	
	(Yeager and	Additive	Multiplicative	Additive	M ulti pli cative	Additive	Multiplicative	Additive	Multiplicative	Additive	Multiplicative	Additive	Multiplicative	BS	BestNLF
Species	Ultsch 1989)	error	error	error	error	error	error	error	error	error	error	error	error		
Nectur us maculosu s	(Yeager and														
(salam ander)	Ultsch 1989)	-97.06	-100.58	-73.42	-90.97	NA	NA	-112.20	-110.63	-123.01	-121.08	-132.30	-133.13	6.40	5.26
Crinia georgiania,	(Cassin 1963)														
after hatching (frog)		-191.51	-189.94	-161.15	-159.22	NA	NA	-179.91	-185.91	-211.30	-209.48	-210.99	-209.12	14.41	6.27
Gnathophausia ingens	(Cassin 1963)														
(crab)		- <i>9</i> .55	- 18.50	-8.41	-17.33	NA	NA	-20.39	-5.62	-26.15	-46.10	-26.59	-59.15	12.53	11.19
Carp, pH 7.9	(Peck et al.,														
	2002)	NA	NA	- <i>9.75</i>	-29.56	NA	NA	-7.65	-5.69	-25.53	-32.80	-26.15	-53.27	14.62	12.78
Trout, pH 8	(Mueller and														
	Seymour 2011)	-25.66	-24.27	-23.19	-21.86	-24.16	-22.81	-15.19	-13.27	-26.27	-24 49	-25.88	-24.13	10.23	6.86
Cryptobranchus	(Mueller and														
alleganiensis	Seymour 2011)														
(salamander)		NA	NA	-52.75	-51.04	NA	NA	-6.11	-4.03	NA	NA	NA	NA	16.11	12.19
Adult mouse (25C)	(Mueller and														
	Seymour 2011)	-35.52	-34.92	-20.04	-22.95	-51.35	-52.84	-49.06	-47.21	-65.59	-65.64	-64.67	-64.04	3.67	4.16
Neonate mouse (25C)	(Mueller and														
	Seymour 2011)	-67.89	-66.20	-57.80	-57.87	-73.68	-73.05	-58.02	-55.81	-68.06	-66.71	-71.36	-70.66	7.28	5.22
Laternula elliptica	(Mickel and														
(Antarctic bivalve)	Childress 1982)	-88.87	-88.22	-64.16	-68.69	-87.01	-87.22	-60.68	-63.92	-85.50	- <i>85.92</i>	-83.89	-84.05	3.74	3.10
Pseudophyrne bibroni,	(Ultsch et al.,														
before hatching (frog)	1980)	-17.07	- 15. 21	-4.08	-18.48	-17.38	-19.74	-14.47	-13.22	-35.95	-37.08	-34.80	-35.30	1.72	2.12
Pseudo phyrne bibroni,	(Ultsch et al.,														
after hatching (frog)	1980)	-19.31	-21.55	- <i>9</i> .25	-18.95	NA	NA	-28.51	-34.25	-32.59	-30.61	-30.80	-31.57	2.42	2.67
Crinia georgiania,	(Steffensen et														
before hatching (frog)	al., 1994)	-32.95	-80.55	-19.60	-62.06	NA	NA	-75.48	-84.15	- 106. 47	-104.50	-107.71	-106.38	3.08	3.16
Greenland Cod, <i>Gadus</i>	(Yeager and														
ogac	Ultsch 1989)	-54.98	-58.88	-37.74	-49.47	NA	NA	-69.47	-74.53	- 100. 17	- 103.49	-98.81	-105.86	7.53	6.63





