J Exp Biol Advance Online Articles. First posted online on 7 March 2013 as doi:10.1242/jeb.077941 Accessible.most recent, version at http://jeb.biologists.org/lookup/doi/10.1242/jeb.077941

1	
2	
3	
4	
5	
6	
7	The permeability of red blood cells to chloride, urea, and water
8	
9	
10	
11	
12	
13	
14	
15	Jesper Brahm
16	Department of Cellular and Molecular Medicine
17	The Faculty of Health, University of Copenhagen, DK-2200 Copenhagen N, Denmark
18	
19	Corresponding address: jbrahm@sund.ku.dk; tel.: +45-35327568
20	

21	SUMMARY
22	This study extends permeability $(P, \text{ cm s}^{-1})$ data on chloride, urea, and water in red
23	blood cells (RBC), and concludes that the urea transporter (UT-B) does not transport
24	water. <i>P</i> of chick, duck, <i>Amphiuma means</i> , dog, and human RBC to ${}^{36}Cl^{-}$, ${}^{14}C$ -urea, and
25	${}^{3}\text{H}_{2}\text{O}$ was determined under self-exchange conditions. At 25°C, pH 7.2-7.5 $P_{Cl} \times 10^{4}$ is
26	0.94-2.15 (all RBC species, C_{Cl} =127-150 mM). $P_{urea} \times 10^6$ is 0.84 (chick) and 1.65
27	(duck) at C_{urea} 1-500 mM. In Amphiuma, dog, and human RBC P_{urea} is concentration-
28	dependent (1-1000 mM, Michaelis-Menten-like kinetics; $K_{\frac{1}{2}}$ respectively 127, 173, 345
29	mM). $P_{urea} \times 10^{6}$ ($C_{urea} = 1$ mM) is 29.5 (<i>Amphiuma</i>), 467 (dog), and 260 (human). Dif-
30	fusional water permeability $P_d \times 10^3$ is 0.84 (chick), 5.95 (duck), 0.39 (Amphiuma), 3.13
31	(dog), and 2.35 (human). DIDS, DNDS, and phloretin inhibit $P_{Cl} > 99\%$. PCMBS,
32	PCMB, and phloretin inhibit $P_{urea} > 99\%$ in Amphiuma, dog, and human, but not in
33	chick and duck RBC. PCMB and PCMBS inhibit P_d in duck, dog, and human, but not in
34	chick and Amphiuma RBC. Temperature dependence, E_A , kJ mol ⁻¹ , of P_{Cl} is 117.8
35	(duck), 74.9 (Amphiuma), and 89.6 (dog). E_A of P_{urea} is 69.6 (duck), and 53.3 (Am-
36	phiuma). E_A of P_d is 34.9 (duck) and 32.1 (Amphiuma). Our present and previous RBC
37	studies indicate that anion (AE1), urea (UT-B), and water (AQP1) transporters respec-
38	tively only transport chloride (all species), water (duck, dog, human), and urea (Am-
39	phiuma, dog, human). Water does not share UT-B with urea, and the solute transport is
40	not coupled under physiological conditions.
41	
42	Keywords: erythrocytes, red cells, RBC, chloride, urea, water permeability, separate

43 pathways

44 **INTRODUCTION** 45 Studies of red cell membrane transport have contributed considerably to different hy-46 potheses of how water and small solutes cross the biological membrane. Sidel and Solomon (1957) reported that the osmotic water permeability, P_f cm s⁻¹, in human RBC 47 was larger than the diffusional water permeability, $P_d \text{ cm s}^{-1}$ (Paganelli and Solomon, 48 49 1957). A P_f greater than P_d indicates that the membrane contains pores, and the ratio P_f 50 $:P_d$ was interpreted as a measure of the width of the pores in the so-called "Equivalent" pore theory" (Solomon, 1968). The pores were assumed to accommodate transport of 51 52 water, small nonelectrolytes such as urea, and even anions (Brown et al., 1975; 53 Poznansky et al., 1976; Solomon et al., 1983). We questioned the concept in a study of 54 chick RBC and a preliminary qualitative study of RBC from different species (Brahm 55 and Wieth, 1977; Wieth and Brahm, 1977). Galey and Brahm (1985) showed that after a 56 proper correction for both P_f and P_d related to the lipid phase of the red cell membrane, 57 the pore according to the equivalent pore theory should accommodate even inulin that cannot permeate the membrane. Finkelstein (1987) suggested that the ratio $P_f: P_d$ de-58 59 termines the length of the pore accommodating water molecules in support of Macey 60 and Farmer's statement (1970) "It would appear that water channels transport water and 61 very little else" in human RBC. It is generally accepted that the water transporting 62 channel in the red cell membrane (aquaporin 1, AQP1) is a specific, or orthodox, water 63 transporter. In other cells and cell systems other AQPs appear to create common path-64 ways to water and several other solutes (see e.g. Borgnia et al., 1999; Verkman and Mi-65 tra, 2000; Wu and Beitz, 2007; Litman et al., 2009; Oliva et al., 2010; Zeuthen, 2010). 66 Yang and Verkman (1998) re-advanced that water and urea share a pathway in 67 common in RBC and that the pathway is the abundant urea transporter UT-B (syno-68 nyms: UT3, UT11). They further concluded that UT-B was as efficient as AQP1 to 69 transport water in RBC. Sidoux-Walter et al., (1999) questioned the conclusion of the 70 expression studies in oocytes by Yang and Verkman (1998) because they found no in-71 crease in water permeability when UT-B was expressed at physiological levels. The 72 critique was opposed in a study of RBC from double knockout mice (Yang and Verk-73 man, 2002) and continued by Levin et al. (2007). 74 The present study has two goals: It extends the general characterisation of chlo-

76 approach to elucidate whether UT-B in RBC creates a common pathway to urea and 77 water. Inspired by earlier works (Jacobs, 1931; Jacobs et al., 1950) the present study, in 78 combination with our previous studies (Brahm and Wieth, 1977; Brahm, 1977, 1982, 79 1983b) compares chloride, urea, and water permeability of RBC from chick, duck, 80 salamander (Amphiuma means), dog, and human. Both previous and present results 81 were obtained with the same techniques and are, therefore, directly comparable. The 82 conclusion of the present study is that UT-B in intact RBC does not function as a com-83 mon pathway that couples urea and water transport. 84

85

86

MATERIALS AND METHODS

Blood samples and reagents

87 Heparinised blood samples from chicks (white leghorn or white Plymouth Rock), ducks 88 (mallards), salamanders (Amphiuma means, from Carolina Biological Supply Company, 89 Burlington, N.C.), dogs (beagles), and humans were taken by venepuncture of a wing 90 vein (birds), a foreleg (dogs), a forearm (humans), or by heart puncture (salamanders). 91 Blood drawing was done according to the relevant ethical guidelines (all species) at the 92 time of the experiment and after informed consent (humans). The blood was washed 93 once in the proper medium to remove the plasma and buffy coat of white cells. Next, the 94 cells were washed at least three additional times and titrated to the desired pH at the 95 temperature of the experiments. After the last wash, the cells were suspended to a haematocrit of ~50 % and incubated at room temperature with radioactive isotopes 96 (³H₂O, [¹⁴C]urea, ³⁶Cl⁻ or [³H]inulin; Amersham Radiochemical Centre; ~18 kBg (0.5 97 μ Ci) pr. ml cell suspension). The cell suspension was gently stirred >6 half-times at 98 99 room temperature to ensure equilibrium (except the extracellular marker $[^{3}H]$ inulin) of ${}^{3}\text{H}_{2}\text{O}$, [${}^{14}\text{C}$]urea or ${}^{36}\text{Cl}^{-}$ across the cell membrane,. 100

101 102

Media

The media used were (mM): A. 145 NaCl (or KCl), 1.5 CaCl₂, 1 MgCl₂, 5 d-glucose, 27
glycyl-glycine. B. 150 KCl, 5 d-glucose, 27 glycyl-glycine. C. 150 KCl, 0.5 (or 2)
KH₂PO₄. D. 118 NaCl, 2.5 KCl, 1.8 CaCl₂, 10 MOPS, 1 d-glucose, 0.1% albumen. Urea
1-1000 mM was added for urea flux experiments. The media were titrated to pH 7.2-7.5
at the temperature of the expewriments with 0.1 M of either NaOH, KOH or HCl. Me-

108 dia A-C were used for experiments with RBC from chicks, ducks, dogs, and humans.

109 Medium D was used for experiments with salamander RBC.

110

Inhibitors

111 112 Phloretin (Sigma-Aldrich, Denmark) was dissolved in ethanol (25 mM) and added to 113 the medium to give a final concentration of 0.5 mM. Incubation with 4,4'-114 diisothiocyanostilbene-2,2'-disulfonate (DIDS, Sigma-Aldrich, Denmark) was carried out analogous to the procedure used for complete (>99%) and irreversible inhibition of 115 anion transport at room temperature (Brahm, 1977). Inhibition with the reversible anion 116 117 transport inhibitor 4,4'-dinitrostilbene-2,2'-disulfonate (DNDS, Sigma-Aldrich, Den-118 mark) was carried out as described by Fröhlich and Gunn (1987). RBC were also treated 119 with 1 mM of the sulfhydryl-reacting reagents *p*-chloromercuribenzoate and *p*chloromercuribenzosulfonate (PCMB and PCMBS, Sigma-Aldrich, Denmark) for 45 120 121 min at 38°C. During the incubation period the cell suspension was washed three times with the incubation medium. In all experiments with inhibitors the efflux medium con-122 123 tained the inhibitor at the concentration concerned. 124

125 Determination of radioactivity, cell surface area, cell volume, and cell water con-126 tent

127 The radioactivity in cell samples, supernatants, and efflux media was determined by β -128 liquid scintillation counting. Solute transport in RBC is conveniently related to the 129 amount of dried cell solids (if necessary corrected for extra solid contents at high solute 130 concentrations as in the present study at urea concentrations >100 mM) and thus to the 131 same number of RBC and a constant membrane area, if RBC are from the same species. 132 Since cell surface area and volume vary among the species in the present study the 133 measured transport rates are converted to permeability coefficients (see below). The cell volume, V, contains \sim 33% solids, primarily haemoglobin. Cell water volume, V_w , de-134 pends on pH and temperature and was determined as described previously (Brahm, 135 1977) by drying samples of packed RBC (haematocrit 97-98%) to constant weight at 136 105°C for 24 hours and correcting for extracellular medium trapped between the cells by 137 138 the centrifugation. The extracellular marker $[^{3}H]$ inulin was used to determine the ex-139 tracellular volume that amounted to 2-3% in all species.

140	Table 1 summarises "standard values" of V , A , and the ratio of cell water volume
141	V_w to A, as determined in previous studies of chick, dog, and human RBC (Wieth et al.,
142	1974; Brahm and Wieth, 1977). I calculated A of duck RBC using data from Gulliver
143	(1875) as we did for chick RBC (Brahm and Wieth, 1977). The duck RBC is an oval
144	nucleated cell with axes 13.1 $\mu m \times 7.4~\mu m$ and a thickness of 1 μm of the non-nucleated
145	part of the cell. Duck RBC V was calculated to be ~175 femtoliter as 1 kg of cell dried
146	solids equals 14.7×10^{12} cells (Lytle et al., 1998), and normal cells contain 1.55-1.57
147	litre cell water per kg cell dried solids (Lytle and McManus, 2002; the present study).
148	Amphiuma RBC V and $V_w A^{-1}$ were calculated from $V_w = 0.682$ (w/w) (Siebens and
149	Kregenow, 1985; the present study), $A = 5000 \ \mu\text{m}^2 \text{ cell}^{-1}$, and $4.7 \times 10^{11} \text{ cells}$ (kg cell
150	dried solids) ⁻¹ (Cala, 1980).
151	
152	Measurements of tracer efflux rates
153	The rate of tracer efflux under self-exchange conditions from the radioactive labelled
154	RBC was determined by means of the Millipore-Swinnex filtering technique and the

RBC was determined by means of the Millipore-Swinnex filtering technique and the 154 continuous flow tube method in the temperature range 0-40°C (Dalmark and Wieth, 155 1972; Brahm, 1977, 1989). By combining the two methods efflux rate coefficients as 156 high as $k \sim 230 \text{ s}^{-1}$ ($T_{\frac{1}{2}} \sim 3 \text{ ms}$) can be determined (Brahm, 1983a). The principles of the 157 158 two methods are the same. In short a small volume of packed and radioactive labelled 159 RBC is suspended in a much larger volume of a non-labelled electrolyte medium, giving 160 a suspension with a haematocrit <1%. At determined times cell-free filtrates are collected from the suspension. The increase of extracellular radioactivity with time in the 161 162 series of filtrates is determined by β -liquid scintillation counting.

163 164

Calculations

The experimental setup is considered as a closed two-compartment model with constant volumes. The extracellular volume is >100 times larger than the intracellular volume, and the flow of tracer is very close to a unidirectional tracer efflux because the tracer flux back into the cells is ignorable. The kinetics of tracer efflux follows first order kinetics in accordance with the equation (Brahm, 1982):

$$\frac{a_t - a_\infty}{a_0 - a_\infty} = e^{-k t} \tag{1}$$

170 a_t and a_∞ are the radioactive solute concentrations at time *t* and infinite respectively, 171 and a_0 is the radioactivity in the dilute cell suspension at t=0. The rate coefficient k (s⁻¹) 172 was determined by linear regression analysis as the numerical value of the slope of the 173 curve in a semilogarithmic plot in which the logarithmic ordinate expresses the fraction 174 of tracer in the cells at a given time (left hand side of Eqn. 1) and the abscissa is time 175 (cf. Figs. 1, 2, and 4). The rate coefficient *k* is related to the halftime $T_{\frac{1}{2}}$ (s) of the efflux 176 by:

$$T_{\nu_2} = \frac{\ln 2}{k} \tag{2}$$

177 k is set equal to the rate coefficient of the non-labelled compound, i.e. there is no iso-

178 tope effect (see Brahm and Wieth, 1977). Hence, the higher k, the steeper is the efflux

179 curve, and the shorter is $T_{\frac{1}{2}}$. The permeability $P(\text{cm s}^{-1})$ is related to k by:

$$P = k \times \frac{V_w}{A} \tag{3}$$

180 Chloride transport in RBC from human has been studied most extensively and shows 181 complicated saturation kinetics. Both k and P depend in a complex manner on the intra-182 cellular and extracellular chloride concentrations and the asymmetric affinities of chlo-183 ride to the transporter (see e.g. Knauf and Brahm, 1989; Gasbjerg et al., 1996; Knauf et al., 1996). The concentration dependent ("apparent") P_{Cl} was determined under equilib-184 185 rium conditions with fixed extracellular chloride concentrations of 127 (Amphiuma) or 186 150 (chick, duck, dog, and human) mM where the transport system is almost completely 187 saturated in human RBC. The narrow concentration interval allows comparing P_{Cl} of the 188 different species.

Urea transport in *Amphiuma*, dog, and human RBC also shows saturation kinetics under self-exchange conditions. The saturation of urea transport, however, is kinetically less complicated and may be described in terms of Michaelis-Menten like kinetics where the apparent permeability coefficient P_{urea} is expressed by:

$$P_{urea} = \frac{J_{urea}^{\max}}{K_{\frac{1}{2}} + C} \tag{4}$$

193 J_{urea}^{max} (mmol cm⁻² s⁻¹) is the maximum urea flux, and $K_{1/2}$ (mM) is the half saturation 194 constant (see e.g. Brahm, 1983b). 195 The apparent activation energy, E_A (cal mol⁻¹), of *P* in the temperature range 0-196 40°C was calculated by linear regression analysis of the relation:

$$\ln P = -\frac{E_A}{R} \times \frac{1}{T} + const.$$
(5)

197 *R* is the gas constant (1.99 cal (mol K)⁻¹), *T* is the absolute temperature (K), and E_A is 198 determined from the slope of the curve.

199

200 201

RESULTS

Chloride transport

Fig. 1 shows the ³⁶Cl⁻ efflux curves under self-exchange conditions in RBC at an ex-202 203 tracellular chloride concentration of 150 mM (chick, duck, dog, and human) and 127 204 mM (Amphiuma). For comparison, the figure shows efflux curves at 25°C that is the physiological temperature to Amphiuma, while the physiological temperatures are 37-205 206 40°C of the other four species. The rate coefficients were used to calculate P_{Cl} at the given chloride concentrations (cf. Eqns. 1-3, Table 2). The efflux curve of dog RBC 207 208 (dashed line) was determined by interpolation of the data obtained at 38°C and 0°C and an E_A of 89.6 kJ mol⁻¹ cf. Table 3 that also summarises E_A of P_{Cl} of duck RBC (4-40°C) 209 and Amphiuma RBC (5-30°C). 210

211

212

Urea transport

213 Urea transport in chick RBC is as low as in lipid bilayer membranes, while in human 214 RBC it is high and saturates (Brahm and Wieth, 1977; Brahm, 1983b). The present study confirms and extends our earlier studies. The efflux curves in Fig. 2 further show 215 that duck RBC transport urea almost as slowly as chick RBC, while Amphiuma, dog, 216 217 and human RBC transport urea much faster. For comparison the efflux rates of urea 218 were all determined at 1 mM urea and 25°C that is the physiological temperature for 219 Amphiuma. Calculation of P_{urea} (cf. Eqn. 3) shows that P_{urea} of chick and duck is very 220 low, P_{urea} of Amphiuma means is ~30 times higher, and P_{urea} of dog and human is ~300 221 times higher (Table 2).

Fig. 3 depicts P_{urea} dependence on C_{urea} in RBC of the five species at 25°C. P_{urea} of chick and duck RBC is concentration independent at C_{urea} =1-500 mM. In contrast, P_{urea} of *Amphiuma*, dog, and human RBC decreased with increasing C_{urea} to 1000 mM in accordance with the concept of saturation kinetics. Urea transport in RBC of the three

species is well described by a Michaelis-Menten like expression (Eqn. 4). Table 4 sum-

227 marises J_{ureq}^{max} (mmol cm⁻² s⁻¹) and $K_{\frac{1}{2}}$ (mM).

Table 3 summarises that the temperature dependence of P_{urea} in duck RBC is 69.6 kJ mol⁻¹(4-40°C) and in *Amphiuma* RBC is 53.3 kJ mol⁻¹(0-25°C).

230 231

Water transport

Fig. 5 shows the diffusional efflux of ${}^{3}\text{H}_{2}\text{O}$ of the five species at 25°C and pH 7.2-7.5. $T_{1/2}$ of ${}^{3}\text{H}_{2}\text{O}$ efflux varies from 7 ms in duck to 154 ms in *Amphiuma* RBC. The P_{d} values of the RBC of the five species are summarised in Table 2. P_{d} was determined in RBC from two human donors whose P_{urea} varies >100% (Brahm, 1983b). Their P_{urea} and P_{d} values are summarised in Table 5. E_{A} of P_{d} in duck RBC with the highest P_{d} (4-40°C) and *Amphiuma* with lowest P_{d} (5-30°C) is similar, 32-35 kJ mol⁻¹ (Table 3).

239

Inhibition of solute transport

Table 6 summarises the inhibitory effects of DIDS, DNDS, PCMBS, PCMB, and phloretin on chloride, urea, and water transport in the five red blood cell species as determined in the present and previous studies. The results (data not shown) of the present study are from double or triple determinations of efflux rate coefficients.

244 245

DISCUSSION

All procedures in the present study are well established in RBC transport studies of widely different solutes. The time resolution of the two methods suits quite well in the present study where $T_{\frac{1}{2}}$ ranges ~10⁴ times (cf. Figs. 1, 2, and 4) from 40 s to ~4 ms, which is within the lower limit of the method (Brahm, 1983a). The time resolution of the two methods overlaps (Brahm, 1977) and the combined setup is, therefore, robust to detect even minor differences in the properties of the five red blood cell species.

All experiments were carried out under self-exchange conditions and osmotic equilibrium that ensures a constant cell volume during the tracer efflux measurements. The conditions prevent some sources of error. Firstly, as seen from Eqns. 2 and 3, $k \times V_w$ is proportional to *P* that is constant at a given solute concentration. If V_w changes, *k* changes inversely, and the efflux curves should show nonlinearity in the depictions in 257 Figs. 1, 2 and 4, bending downwards by cell shrinkage and upwards by cell swelling. 258 Nonlinearity can be minimised if initial rates are determined by equilibrating only 10-259 15% of the intracellular tracer (Brahm and Galey, 1987; Gasbjerg and Brahm, 1991). In 260 the present study the efflux curves show linearity up to 90% exit of the intracellular 261 tracer, indicating that the tracer efflux follows a mono-exponential course. Secondly, the 262 physiological V of the different species varies $>40\times$ (Table 1) and possible effects of 263 volume changes on e.g. the mechanical properties of the RBC membranes from the dif-264 ferent species are avoided. Thirdly, the constant V during the tracer efflux experiments 265 prevents solvent drag effects as demonstrated for water in human RBC by Galey and 266 Brahm (1987).

267

268

Chloride permeability

269 P_{Cl} of artificial bilayer membranes is of the order of 1×10^{-10} cm s⁻¹ (Toyoshima and 270 Thompson, 1975). P_{Cl} of RBC of all species so far investigated, except Lamprey eryth-271 rocytes (see Nikinmaa, 1990), is ~10⁶ times higher (see e.g. Wieth et al., 1974; Jensen 272 and Brahm, 1995; Jensen et al., 1998, 2001, 2003; Soegaard et al., 2012) and is due to a 273 rapid anion exchange system that enhances the CO₂ transporting capacity of blood. 274 Duck and *Amphiuma* RBC are no exception to that observation (Table 2). A comparison 275 of anion transport in the different red cell species raises some issues to consider.

Firstly, the anion transport in human RBC is well characterised both structurally and kinetically as a saturable asymmetric transport system (AE1) with $\sim 10^6$ copies per cell that perform a tightly coupled anion exchange (see e.g. Knauf, 1989; Jennings, 1992a, 1992b; Knauf et al., 2002). The characterisation of the kinetics of anion transport in other RBC species is very incomplete. I assume that the saturation of the anion transporters of the different RBC species is comparable at the physiological concentrations of 127 and 150 mM used in the present study.

Secondly, the present study compares data obtained at 25°C. An appropriate physiological approach is to compare the anion transport in RBC at the species respective "functional body temperature" (Jensen et al., 2001) that is 40°C for duck and chick, 37°C for human and dog, and 25°C for *Amphiuma*. That approach gives very similar values of P_{Cl} of 3-4 × 10⁻⁴ cm s⁻¹ at the functional temperatures of RBC of birds and mammals that is twice the value of *Amphiuma* RBC. However, the overall conclusion still holds that the RBC under study all have a transport system that increases $P_{Cl} \sim 10^6 \times$ above a "basic" *P* of lipid bilayer membranes and the lipid phase of the RBC membranes.

292 Thirdly, the anion transport by the RBC AE1 shows similar high E_A . At 0-40°C 293 both chick and human RBC show a nonlinear E_A in an Arrhenius diagram. We (Brahm 294 and Wieth, 1977; Brahm, 1977) simplified the findings by assuming two E_A values, 120-135 kJ mol⁻¹ at low temperatures, and 80-94 kJ mol⁻¹ in the physiological tem-295 perature range. If the nonlinearity is ignored the overall E_A is ~100-110 kJ mol⁻¹. The 296 297 data of Amphiuma, dog, and human RBC (Table 3) does not allow the same distinction 298 as for chick and human RBC. However, the overall E_A lies in the same narrow interval. 299 Fourthly, the specific inhibitors DIDS and DNDS and the non-specific inhibitor 300 phloretin efficiently inhibit the anion transport in human RBC. A similar efficient inhibition of anion transport in the other red cell species is also obtainable by means of the 301 302 inhibitors (Table 6).

The overall conclusion is that anion transport is similar in the selected RBC species. DIDS and DNDS inhibit neither urea nor water transport in the RBC, in agreement with that AE1 does not transport the two solutes. The conclusion from the comparative results of urea and water transport (see below) is also that this abundant transporter *per se* does not create a leak pathway to urea and water.

308

309

Urea permeability

 P_{urea} and $P_{thiourea}$ is ~4 × 10⁻⁶ cm s⁻¹ at 20-28°C in different lipid bilayer membrane sys-310 tems with no built-in transporters (Vreeman, 1966; Galucci et al., 1971; Poznansky et al., 311 312 1976). Thiourea is $\sim 10 \times$ more lipid soluble than urea (Collander and Bärlund, 1933) and the similar P_{urea} and $P_{thiourea}$ in artificial bilayer membrane systems underline that other 313 314 factors than the partition coefficient, such as the entrance and exit rates of the solute in the 315 membrane, are important. The P_{urea} and $P_{thiourea}$ are concentration independent, in agreement with a transport mode of simple diffusion through the lipid membrane phase. 316 Chick RBC have a low P_{urea} , $P_{thiourea}$, and $P_{methylurea}$ of $\sim 1 \times 10^{-7}$ cm s⁻¹ in the con-317 centration range 1-500 mM at 0°C (Brahm and Wieth, 1977) that is comparable to the 318 319 permeability in the above-cited artificial systems. At 25°C the low P_{urea} in chick RBC is 0.84×10^{-6} cm s⁻¹ ($T_{\frac{1}{2}}$ 40.8 s, Fig. 2; Table 2) that is concentration independent ($C_{urea} = 1$ -320

321	500 mM, Fig. 3) and agrees with a transport mode of simple diffusion through the lipid
322	phase of the membrane. The same pattern was found in duck RBC where P_{urea} was 1.65 \times
323	10^{-6} cm s ⁻¹ ($T_{\frac{1}{2}}$ 23.5 s, Fig. 2; Table 2; C_{urea} = 1-500 mM, Fig. 3). The present study does
324	not reveal whether the twofold higher P_{urea} in duck RBC is due to a different lipid compo-
325	sition of the duck RBC membrane or an inter-individual variation as reported for chick
326	RBC (Brahm and Wieth, 1977). Albeit P_{urea} is twice that of chick RBC the conclusion
327	holds that urea is transported by simple diffusion in duck RBC. In accordance with the
328	simple diffusion mode, P_{urea} of chick and duck RBC is inhibited by neither PCMBS nor
329	PCMB that inhibit P_d and P_{urea} of human RBC, nor by phloretin that is a non-specific in-
330	hibitor of facilitated diffusion processes (Table 6; Brahm and Wieth, 1977; Brahm, 1982,
331	1983b). Further, E_A of P_{urea} is ~70 kJ mol ⁻¹ that is typical for solute transport through the
332	lipid membrane phase (Table 3; Brahm and Wieth, 1977). E_A of UT-B-mediated P_{urea} is
333	lower: 53 kJ mol ^{-1} in <i>Amphiuma</i> and 12-35 kJ mol ^{-1} in human RBC (Table 3; Brahm,
334	1983b). However, it should be emphasised that E_A is not a sensitive discriminator to spec-
335	ify which transport mode prevails.
336	Urea transport in RBC of Amphiuma, dog, and human shows the characteristic pat-
337	tern of facilitated diffusion: A much higher transport than in lipid bilayer systems, satura-
338	tion kinetics, both competitive and noncompetive, and reversible and irreversible inhibi-
339	tion, as well as temperature dependence different from that in bilayer systems.
340	P_{urea} of human RBC is 2-3 orders of magnitude higher than in chick and duck RBC.
341	In the present study P_{urea} at 1 mM urea is 2.60×10^{-4} cm s ⁻¹ ($T_{1/2}$ 116 ms, Fig. 2), close to
342	2.67×10^{-4} cm s ⁻¹ in a previous study (Brahm, 1983b). The permeability is 4-5 times lower

In the present study P_{urea} at 1 mM urea is 2.60×10^{-4} cm s⁻¹ ($T_{1/2}$ 116 ms, Fig. 2), close to 2.67 × 10⁻⁴ cm s⁻¹ in a previous study (Brahm, 1983b). The permeability is 4-5 times lower than the value of 1.16×10^{-3} cm s⁻¹ reported by Mayrand and Levitt (1983) who determined P_{urea} from the slope of efflux curves with two points (Fig. 3 in Mayrand and Levitt, 1983). In the present study (Fig. 2) and Brahm (1983b) P_{urea} was determined from the slope of efflux curves with generally six points (regression coefficient $r^2 = 0.99$).

347 P_{urea} decreases with increased urea concentration in accordance with saturation ki-348 netics (Fig. 3; Eqn. 4) of the Michaelis-Menten type. Similar values of J_{urea}^{\max} and $K_{1/2}$ were 349 determined in the present and previous studies (cf. Table 4).

In dog RBC P_{urea} at 1 mM is almost twice as high $(4.67 \times 10^{-4} \text{ cm s}^{-1}, T_{\frac{1}{2}} 54 \text{ ms},$ Fig. 2) as is the apparent affinity, expressed by $K_{\frac{1}{2}}$, compared to human RBC, while J_{urea}^{max} is similar in the two species (Table 4). Liu et al. (2011), using a stopped-flow light scattering methods, studied whether P_{urea} in RBC from selected mammals and birds is related to diet and urine concentrating ability, and reported a P_{urea} at 10°C and $C_{urea} = 250$ mM of dog and human RBC of respectively 5.3×10^{-5} and 1.1×10^{-5} cm s⁻¹. Extrapolated values to room temperature are one order lower than in the present study. P_{urea} in dog RBC shows extremely low activation energy of ~1 kJ mol⁻¹ and suggests that e.g. unstirred layers may contribute significantly to the overall lower permeability.

Urea transport in Amphiuma RBC is also high and saturates (Fig. 3). The affinity to 360 urea in these cells is even higher than in dog RBC as $K_{\frac{1}{2}}$ is 127 mM while J_{urea}^{max} is about 25 361 times lower than in dog and human RBC (Table 4). If J_{urea}^{max} is expressed per cell instead of 362 per unit area, $J_{urea}^{\text{max,cell}}$ (×10¹⁰ mmol cell⁻¹ s⁻¹) becomes similar: 1.6, 0.9, and 1.2 in respec-363 tively Amphiuma, dog, and human RBC. In human RBC UT-B is ascribed to be the Kidd 364 365 antigen and the estimated number of transporters is between 14,000 and 32,000 (Masouredis et al., 1980; Fröhlich et al., 1991; Manuzzu et al., 1993; Neau et al., 1993; Olivés et 366 al., 1995). Taking the 14,000 copies the turnover number in human RBC is $\sim 5 \times 10^6$ urea 367 molecules site⁻¹ s⁻¹ at 25°C in agreement with previous estimates (Manuzzu et al., 1993; 368 Sands et al., 1997). It is an open question whether the similar $J_{urea}^{max,cell}$ in the three species 369 is due to the same number of transport sites per cell with the same turnover rate per site or 370 371 different number of transport sites with different turnover rates per site. The turnover num-372 ber indicates a channel-like mechanism (Manuzzu et al., 1993) but the term "facilitated 373 diffusion" conveniently reflects the effect and not the mechanism of UT-B.

374 375

Diffusional water permeability

 P_d in human, dog, and duck RBC was inhibited with either PCMB or PCMBS by 50%, 376 67%, and 81%, respectively (Table 6). The maximal inhibition leaves a residual P_d in all 377 three RBC species of $1.1-1.3 \times 10^{-3}$ cm s⁻¹ that is as low as in chick RBC and artificial 378 379 lipid bilayer membranes, and the same as the residual P_f in human RBC after PCMB or 380 PCMBS treatment (Table 6; Cass and Finkelstein, 1967; Brahm and Wieth, 1977; Brahm, 381 1982; Finkelstein, 1987; Mathai et al., 2001, 2007). Most likely the two inhibitors close all 382 water transporting channels completely (Finkelstein, 1987). In human red blood cell ghosts the complete inhibition increased E_A of P_d from 30 to 60 kJ mol⁻¹, which is a typical value 383

of artificial membranes and liposomes. E_A is, however, too crude to be a discriminator of transport modes: E_A of P_d is ~42 kJ mol⁻¹ in chick RBC and 32 kJ mol⁻¹ in *Amphiuma* RBC with no AQP1, and is of the same order of magnitude as in duck and unmodified human RBC with AQP1 (Table 3; Brahm and Wieth, 1977; Brahm, 1982).

388 389

Do urea and water share a pathway in common in red blood cells?

Yang and Verkman (1998) suggested "That the UT3 protein is associated with an aqueous
channel that transports water and urea in a coupled manner". They further proposed that
the UT-B was as efficient as AQP1 to transport water. Their conclusions were based upon
expression studies in *Xenopus laevis* oocytes combined with volumetric measurements of
water uptake at 10°C and [¹⁴C]urea uptake at 1 mM at 23°C.

395 Sidoux-Walter et al. (1999) questioned the conclusion by Yang and Verkman 396 (1998). They showed that expression at high levels of the human RBC UT-B in 397 *Xenopus laevis* oocytes induced not only high P_{urea} and P_f as reported by Yang and 398 Verkman (1998), but also an increased permeability to small solutes, such as formamide 399 through propionamide, and to diols, such as ethylene glycol and propylene glycol. Further, neither phloretin nor PCMB inhibited P_{urea} as they do in RBC that transport urea 400 401 by facilitated diffusion. The data indicates that the transport specificity disappeared at 402 high level expression. In contrast, expression at physiological levels increased expect-403 edly the phloretin-sensitive urea transport with no increase of P_f (Sidoux-Walter et al., 404 1999). The study by Lucien et al. (2002) also pointed out that expression of recombinant 405 urea transporter (named hUT-B1) in Xenopus oocytes creates a Purea that is efficiently 406 inhibited by phloretin, but much less inhibited by PCMBS than the native P_{urea} in hu-407 man RBC. The authors further concluded that hUT-B1 is not a water channel.

408 Yang and Verkman (2002) extended their expression studies by means of double 409 knockout mice whose RBC lack AOP1 and UT-B, and concluded that UT-B is an effi-410 cient water transporter. According to their study P_f distributes at 37°C with 6% related 411 to UT-B, 79% to AOP1, and 15% to the lipid phase (the numbers are not in harmony with Fig. 5 of their study where the respective numbers are 8%, 90%, and 2%). The UT-412 B mediated fraction of P_f had an E_A of <2 kcal mol⁻¹ (8 kJ mol⁻¹). This is about half the 413 values of E_A of self-diffusion of water in water and previously reported values of total P_f 414 in RBC of which > 90% is ascribed to AQP1. Taking the 2 kcal mol⁻¹ and the other re-415

416 ported E_A values by Yang and Verkman (2002) for P_f of AQP1 (7.3 kcal mol⁻¹) and the 417 lipid phase (19 kcal mol⁻¹), the 6% of P_f related to UT-B at 37°C increases to >14% at 418 10°C that is the experimental temperature of the study. The respective increase of P_f of 419 AQP1 is from 79% to 84%, indicating that the lower the temperature the more P_f should 420 be related to UT-B compared to AQP1.

The native and the modified mouse RBC were not tested for other functional properties than water and urea transport. Neither this study nor a later inhibition study from the same laboratory, using the same strategy (Levin et al., 2007) included the inhibitors PCMB and PCMBS that have been widely used by others to inhibit RBC water and urea transport (Macey, 1984).

426 The present study uses a different approach and compares P_{urea} and P_d of the na-427 tive systems in intact RBC. The advantage is to avoid any major modification of cell 428 membranes or expression in other cells that may modify the physiological pathway(s) or 429 even give rise to artificial pathways. Earlier studies show that RBC from different spe-430 cies transport solutes differently (Jacobs, 1931; Jacobs et al., 1950), and a proper selec-431 tion of RBC species may reveal whether urea and water share a pathway in common in 432 RBC. The selection of RBC species reflects that chicks and ducks as other birds excrete 433 uric acid and that their RBC have no UT-B. Humans and dogs, and to a lesser extent 434 Amphiuma means, concentrate and excrete urea as the end product of their protein me-435 tabolism, and their RBC have UT-B. Chick and Amphiuma RBC have no AQP1, and 436 hence, the four combinations of high/low P_{urea} and P_d are available.

Water and a solute are said to share a common pathway if: 1) Water and the solute experience the same structural environment as they cross the membrane, 2) they are able to interact or compete with one another to affect the permeability of one another, and 3) an inhibitor of water or solute permeating the pore also affects (inhibits or stimulates) the permeation of the other molecule in the pore (Brahm et al., 1993).

Whether water and urea share the AQP1 as suggested by some (Solomon, 1968;
Solomon et al., 1983) and turned down by others (Macey, 1984; Galey and Brahm, 1985;
Brahm and Galey, 1987; Finkelstein, 1987) or urea and water share UT-B (Yang and
Verkman, 1998, 2002; Levin et al., 2007) makes no principal difference in the testing
strategy of the hypothesis. Firstly, is *P*_{solute} above that of lipid bilayers that have no transporters inserted and if so does the transport saturate? Secondly, do the solutes interact?

Thirdly, is inhibition of both solutes present with the same inhibitor and with the same
pattern? Fourthly, is the temperature dependence of solute transport through the proposed
transporter different to that of diffusion through the lipid membrane phase?

451 Chick RBC show P_{urea} and both P_d and P_f as low as in lipid bilayer membranes (Ta-452 ble 2; Brahm and Wieth, 1977; Farmer and Macey, 1970). Urea shows no saturation kinet-453 ics (Fig. 3; Brahm and Wieth, 1977) and well-established inhibitors of water and urea 454 transport in other RBC with UT-B and AQP1 (Table 6) inhibit neither P_{urea} nor P_d . E_A of P_{urea} is high 71.2 kJ mol⁻¹ (Brahm and Wieth, 1977) and of the same magnitude as to other 455 nonelectrolytes that permeate the lipid membrane phase (Wartiovaara, 1949; Macey et al., 456 1972; Galey et al., 1973; Brahm, 1983a). E_A of P_d is 41.9 kJ mol⁻¹ (Brahm and Wieth. 457 458 1977).

The high anion self-exchange flux underlines that a proteinacous pathway that creates very high P_{anion} does not create a leak pathway to water and urea. The chick RBC results are in line with the concept of a basic P_{urea} , P_d , and P_f caused by simple diffusion through the lipid phase of the RBC membrane. Both E_A of P_{urea} and P_d and the lack of inhibition by means of phloretin, PCMB, and PCMBS support the concept.

464 The results of P_{Cl} and P_{urea} in duck RBC are in line with those of chick RBC. How-465 ever, P_d of duck RBC is the highest of the five RBC species and supports the concept that 466 the cell membrane contains AQP1 that transports water and no solutes.

467 The studies of Amphiuma RBC show that high P_{Cl} is combined with high P_{urea} and 468 low P_d . In comparison with human RBC P_{Cl} is very close in the two RBC species (Table 469 2) while Purea at 1 mM is about ten times lower in Amphiuma RBC. Our present knowl-470 edge of anion and urea transport in human RBC unquestionably calls for different path-471 ways of the two solutes. No evidence points to a different concept in Amphiuma RBC. The other important finding is that P_{urea} is markedly higher in Amphiuma RBC than in chick 472 473 and duck RBC while P_d is even lower than in chick RBC. Hence, UT-B in Amphiuma 474 RBC neither increases P_d nor creates a common pathway to urea and water. 475 From the studies of P_{Cl} , P_{ureq} , and P_d in intact human and dog RBC one might as-476 sume a coupling of water and urea transport because both cell types show higher values 477 than in lipid bilayers. However, the ratio of P_d to P_{urea} differs considerably. The ratio is 6.7 in dog RBC, in pig RBC the ratio is 8.2 (J. Brahm, unpublished data), and in human 478 479 McLeod erythrocytes with Kell antigen-null the ratio is 7 (Brahm et al., 1993). The range

480 of P_{urea} from different donors varies over 100% (Brahm, 1983b), and taking the highest 481 and lowest values, the ratio shows a donor dependence between 9 and 4 (Table 5). These 482 results and the comparative study of 11 different mammals by Liu et al. (2011) that showed a five-fold variation of P_{urea} and fairly similar P_f underline that the ratio is not 483 484 fixed and support the conclusion that the transport of water and urea is not coupled. Brahm 485 and Galey (1987) reached the same conclusion as they showed no solvent drag effect on 486 urea transport in human RBC while the efflux of tritiated water increased with the osmotic 487 flow of water and decreased against the osmotic flow of water.

488 The inhibition data (Table 6) neither supports a coupling of the two solutes. The 489 nonspecific inhibitor of facilitated transport systems phloretin efficiently inhibits both an-490 ion and urea transport almost completely, but has no effect on P_d . According to the criteria listed above this argues against the common pathway. PCMB and PCMBS are also non-491 specific inhibitors. Both compounds inhibit P_{urea} and P_d to values close to those of lipid 492 bilayer systems and RBC of chick (basic P_{urea} and P_d), duck (basic P_{urea}), and Amphiuma 493 494 (basic P_d). The tempting conclusion is that the two inhibitors close a common pathway. 495 However, the time dependence of the PCMB/PCMBS inhibitory effect is different. Inhibi-496 tion of P_{ureq} appears much faster than P_f (Macey, 1984) and inhibition of P_f and P_d has the 497 same time constant (W.R. Galey and J. Brahm, unpublished data).

498 The analogue compound thiourea inhibits urea transport. Thiourea is a competitive 499 inhibitor that is also transported by UT-B in human RBC. Thiourea is transported $\sim 100 \times$ slower than urea (at 0°C; Wieth et al., 1974). The half saturation constant $K_{1/2}^{thiourea}$ is 15-20 500 mM close to the half inhibition constant $K_{I,urea}^{thiourea}$ of 12-14 mM of urea transport (Wieth et 501 502 al., 1974; Solomon and Chasan, 1980; Mayrand and Levitt, 1983; Brahm, 1983b) and the half inhibition constant of urea on thiourea transport $K_{I,thiourea}^{urea}$ is close to $K_{\frac{V}{2}}^{urea}$ (J. Brahm, 503 504 unpublished data). The observation that $K_{1/2}$ and K_{I} of each solute are equal accords with 505 the concept that urea and thiourea transport follows kinetics of simple Michaelis-Menten 506 type with the two solutes competing for binding to one and the same site. Neither thiourea 507 at 100 mM that inhibits $P_{urea} > 95\%$ nor urea at 500 mM inhibits P_d (Brahm, 1982).

508 The overall conclusion of the present comparative study is that there is substantial 509 evidence that urea and water do not share UT-B, and that transport of the two solutes is not 510 coupled in intact RBC.

511 ACKNOWLEDGEMENT

512 Dr. Anne K. Busk is gratefully acknowledged for helpful advisement and discussions.

514	REFERENCES
515	Borgnia, M., Nielsen, S., Engel, A. and Agre, P. (1999). Cellular and molecular biol-
516	ogy of the aquaporin water channels. Ann. Rev. Biochem. 68, 425-58.
517	Brahm, J. (1977). Temperature-dependent changes of chloride transport kinetics in hu-
518	man red cells. J. Gen. Physiol. 70, 283-306.
519	Brahm, J. (1982). Diffusional water permeability of human erythrocytes and their ghosts.
520	J. Gen. Physiol. 79, 791-819.
521	Brahm, J. (1983a). Permeability of human red cells to a homologous series of aliphatic
522	alcohols. J. Gen. Physiol. 81, 283-304.
523	Brahm, J. (1983b). Urea permeability of human red cells. J. Gen. Physiol. 82, 1-23.
524	Brahm, J. (1983c). Kinetics of glucose transport in human erythrocytes. J. Physiol. 339,
525	339-354.
526	Brahm, J. (1989). Transport measurement of anions nonelectrolytes and water in red
527	blood cell and ghost systems. In Methods in Enzymology (ed. B. Fleischer and S.
528	Fleischer), pp. 173, 160-175. New York: Academic Press.
529	Brahm, J. and Wieth, J. O. (1977). Separate pathways for urea and water and for chlo-
530	ride in chicken erythrocytes. J. Physiol. 66, 727-749.
531	Brahm, J. and Galey, W. R. (1987). Diffusional solute flux during osmotic water flow
532	across the human red cell membrane. J. Gen. Physiol. 89, 703-716.
533	Brahm, J., Galey, W. R. and Levinson, C. (1993). Water and solute permeation of po-
534	rous membranes. In Water Transport in Leaky Epithelia. Alfred Benzon Sympo-
535	sium 34 (ed. H. H. Ussing, E. H. Larsen and N. Willumsen), pp. 34, 504-512. Co-
536	penhagen: Munksgaard.
537	Brown, P. A., Feinstein, M. B. and Sha'afi, R. I. (1975). Membrane proteins related to
538	water transport in human erythrocytes. Nature (London). 254, 523-525.
539	Cala, P. M. (1980). Volume regulation by Amphiuma red blood cells. The membrane
540	potential and its implications regarding the nature of ion-flux pathways. J. Gen.
541	Physiol. 76 , 683-708.
542	Cass, A. and Finkelstein, A. (1967). Water permeability of thin lipid membranes. J.
543	Gen. Physiol. 50, 1765-1784.
544	Collander, R. and Bärlund, H. (1933). Permeabilitätsstudien an Chara Ceratophylla.
545	Acta Botan. Fennici. 11, 1-114.

546	Dalmark, M. and Wieth, J. O. (1972). Temperature dependence of chloride bromide
547	iodide thiocyanate and salicylate transport in human red cells. J. Physiol. 244,
548	583-610.
549	Farmer, R. E. L. and Macey, R. I. (1970). Pertubation of red cell volume: rectification of
550	osmotic flow. Biochim. Biophys. Acta. 196, 53-65.
551	Finkelstein, A. (1987). The red cell membrane. In Water movement through lipid bilayers
552	pores and plasma membranes. Theory and reality, pp. 166-184. New York: John
553	Wiley and Sons Inc.
554	Fröhlich, O. and Gunn, R. B. (1987). Interactions of inhibitors on anion transporter of
555	human erythrocyte. Amer. J. Physiol. Cell Physiol. 252, C153-C162.
556	Fröhlich O., Macey R. I., Edwards-Moulds J., Gargus J. J. and Gunn R. B. (1991).
557	Urea transport deficiency in Jk(a-b-) erythrocytes. Amer. J. Physiol. Cell Physiol.
558	60 , C778-C783.
559	Galey, W. R., Owen, J. D. and Solomon, A. K. (1973). Temperature dependence of
560	nonelectrolyte permeation across red cell membranes. J. Gen. Physiol. 61, 727-
561	746.
562	Galey, W. R. and Brahm, J. (1985). The failure of hydrodynamic analysis to define pore
563	size in cell membranes. Biochim. Biophys. Acta. 818, 425-428.
564	Galucci, E., Micelli, S. and Lippe, C. (1971). Non-electrolyte permeability across lipid
565	bilayer membranes. In Role of Membranes in Secretory Processes (ed. L. Bolis, R.
566	D. Keynes and W. Wilbrandt), pp. 397-400. Amsterdam; North-Holland.
567	Gasbjerg, P. K. and Brahm, J. (1991). Glucose transport kinetics in human red blood
568	cells. Biochim. Biophys. Acta. 1062, 83-93.
569	Gasbjerg, P. K., Funder, J. and Brahm, J. (1993). Kinetics of Residual Chloride
570	Transport in Human Red Blood Cells after Maximum Covalent 44'-
571	Diisothiocyanostilbene-22'-Disulfonic Acid Binding. J. Gen. Physiol. 101, 715-
572	732.
573	Gasbjerg, P. K., Knauf, P. A. and Brahm, J. (1996). Kinetics of bicarbonate transport
574	in human red blood cell membranes at body temperature. J. Gen. Physiol. 108,
575	565-576.
576	Gulliver, G. (1875). Observations on the sizes and shapes of the red cell corpuscles of
577	blood of vertebrates with drawings of them to a uniform scale and extended and

578	revised tables of measurements. Proc. Sci. Meetings Zoological Soc. Lond. 474-
579	496.
580	Jacobs, M. H. (1931). Osmotic hemolysis and zoological classification. Proc. Amer.
581	Phil. Soc. 70, 363-370.
582	Jacobs, M. H., Glassman, H. N. and Parpart, A. K. (1950). Hemolysis and zoological
583	relationship comparative studies with four penetrating non-electrolytes. J. Exper.
584	<i>Zool.</i> 113 , 277-300.
585	Jennings, M. L. (1992a). Cellular anion transport. In The Kidney: Physiology and
586	Pathophysiology (ed. D. W. Seldin and G. Giebisch), pp. 113-145. New York:
587	Raven Press.
588	Jennings, M. L. (1992b). Anion transport proteins. In The Kidney: Physiology and
589	Pathophysiology (ed. D. W. Seldin and G. Giebisch), pp. 503-535. New York:
590	Raven Press.
591	Jensen, F. B. and Brahm, J. (1995). Kinetics of chloride transport across fish red
592	blood cell membranes. J. Exp. Biol. 198, 2237-2244.
593	Jensen, F. B., Wang, T., Jones, D. R. and Brahm, J. (1998). Carbon dioxide transport
594	in alligator blood and its erythrocyte permeability to anions and water. Amer. J.
595	Physiol. Regul. Integr. Comp. Physiol. 274, R661–R671.
596	Jensen, F. B., Wang, T. and Brahm, J. (2001). Acute and chronic influence of tem-
597	perature on red blood cell anion exchange. J. Exp. Biol. 204, 39-45.
598	Jensen, F. B., Brahm, J., Koldkjær, P., Wang, T., McKenzie, D. J. and Taylor, W.
599	(2003). Anion exchange in the giant erythrocytes of African lungfish. J. Fish Biol.
600	62 , 1044-1052.
601	Knauf, P. A. (1989). Kinetics of anion transport. In The Red Cell Membrane, ed. Raess
602	BU and Tunnicliff G, pp. 171-200. Humana Press, Clifton.
603	Knauf, P. A. and Brahm, J. (1989). Functional asymmetry of the anion-exchange pro-
604	tein capnophorin: effects on substrate and inhibitor binding. In Methods in Enzy-
605	mology, ed. Fleischer B and Fleischer S, 173, 432-453. Academic Press, New
606	York.
607	Knauf, P. A., Gasbjerg, P. K. and Brahm, J. (1996). The asymmetry of chloride
608	transport at 38°C in human red blood cell membranes. J. Gen. Physiol. 108, 577-
609	589.

610	Knauf, P. A., Law, F., Leung, T. V., Gehret, A. U. and Perez, M.L. (2002). Sub-
611	strate-dependent reversal of anion transport site orientation in the human red
612	blood cell anion-exchange protein AE1. Proc. Natl. Acad. Sci. 99, 10861-10864.
613	Levin, M. H., de la Fuente, R. and Verkman, A. S. (2007). Urearetics: a small mole-
614	cule screen yields nanomolar potency inhibitors of urea transporter UT-B. FASEB
615	<i>J</i> . 21 , 551-563.
616	Litman, T., Søgaard, R. and Zeuthen, T. (2009). Ammonia and urea permeability of
617	mammalian aquaporins. In Handbook of Experimental Pharmacology (ed. E.
618	Beitz), pp. 190, 327-58. Berlin: Springer-Verlag.
619	Liu, L., Lei, T., Bankir, L., Zhao, D., Gai, X., Zhao, X. and Yang, B. (2011). Eryth-
620	rocyte permeability to water and urea: comparative study in rodents, ruminants,
621	carnivores, humans, and birds. J. Comp. Physiol. B 181, 65-72.
622	Lucien, N., Sidoux-Walter, F., Roudier, N., Ripoche, P., Huet, M., Trinh-Trang-
623	Tan, M-M., Cartron, J-P. and Bailly, P. (2002). Membrane transport structure
624	function and biogenesis: Antigenic and functional properties of the human red
625	blood cell urea transporter hUT-B1. J. Biol. Chem. 277, 34101-34108.
626	Lytle, C., McManus, T. J. and Haas, M. (1998). A model of Na-K-2Cl cotransport
627	based on ordered ion binding and glide symmetry. Amer. J. Physiol. Cell Physiol.
628	274 , C299-C309.
629	Lytle, C. and McManus, T. (2002). Coordinate modulation of Na-K-2Cl cotransport
630	and K-Cl cotransport by cell volume and chloride. Amer. J. Physiol. Cell Physiol.
631	283 , C1422-C1431.
632	Macey, R. I. (1984). Transport of water and urea in red blood cells. Amer. J. Physiol.
633	Cell Physiol. 246, C195-C203.
634	Macey, R. I. and Farmer, R. E. L. (1970). Inhibition of water and solute permeability in
635	human red cells. Biochim. Biophys. Acta. 211, 104-106.
636	Macey, R. I., Karan, D. M. and Farmer, R. E. L. (1972). Properties of water channels
637	in human red cells. Biomembranes 3, 331-40.
638	Manuzzu, L. M., Moronne, M. M. and Macey, R. I. (1993). Estimate of the number of
639	urea transport sites in erythrocyte ghosts using a hydrophobic mercurial. J. Membr.
640	<i>Biol.</i> 133 , 85-97.

55.

JTHOR MANUSCRIPT
7
ACCEPTED AUTH
ЦČ.,
- Yg
of Experimental Biolc

641	Masouredis, S. P., Sudora, E., Mahan, L. and Victoria, E. J. (1980). Quantitative
642	immunoferritin microscopy of Fya, Fyb, Jka, U, and Dib antigen site numbers on
643	human red cells. <i>Blood</i> . 56 , 969-977.
644	Mathai, J. C., Sprott, G. D. and Zeidel, M. L. (2001). Molecular mechanisms of wa-
645	ter and solute transport across archaebacterial lipid membranes. J. Biol. Chem.
646	276 , 27266-27271.
647	Mathai, J. C., Tristram-Nagle, S., Nagle, J. F. and Zeidel, M. L. (2007). Structural
648	Determinants of Water Permeability through the Lipid Membrane. J. Gen.
649	<i>Physiol.</i> 131 , 69-76.
650	Mayrand, R. R. and Levitt, D. G. (1983). Urea and ethylene glycol-facilitated trans-
651	port systems in the human red cell membrane. J. Gen. Physiol. 81, 211-237.
652	Neau, P., Degeilh, F., Lamotte, H., Rousseau, B. and Ripoche, P. (1993). Photoaffin-
653	ity labeling of the human red-blood-cell urea-transporter polypeptide components.
654	Possible homology with the Kidd blood group antigen. Eur. J. Biochem. 218, 447-

- 656 Nikinmaa, M. (1990). Vertebrate Red Blood Cells. In Zoophysiology (ed. S. D. Brad-
- shaw, W. Burggren, H. C. Heller, S. Ishii, H. Langer, G. Neuweiler and D. J. Randall), pp. 28, 104-106. Berlin: Springer-Verlag.
- Oliva, R., Calamita, G., Thornton, J. M. and Pellegrini-Calace, M. (2010). Electrostatics of aquaporin and aquaglyceroporin channels correlates with their transport
 selectivity. *Proc. Natl. Acad. Sci.* 107, 4135-4140.
- Olivès, B., Mattei, M-G., Huet, M., Neau, P., Martial, S., Cartron, J-P. and Bailly,
 P. (1995). Kidd blood group and urea transport function of human erythrocytes
- are carried by the same protein. J. Biol. Chem. **270**, 15607-15610.
- Paganelli, C. V. and Solomon, A. K. (1957). The rate of exchange of tritiated water
 across the human red cell membrane. *J. Gen. Physiol.* 41, 259-277.
- 667 Poznansky, M., Tong, S., White, P. C., Milgram, J. M. and Solomon, A. K. (1976).
- 668 Nonelectrolyte diffusion across lipid bilayer systems. J. Gen. Physiol. 67, 45-66.
- Sands, J. M., Timmer, R. T. and Gunn, R. B. (1997). Urea transporters in kidney and
 erythrocytes. *Amer. J. Physiol. Ren. Physiol.* 273, F321 F339.
- 671 Sidel, V. W. and Solomon, A. K. (1957). Entrance of water into human red cells under
 672 an osmotic pressure gradient. *J. Gen. Physiol.* 41, 243-257.

673	Sidoux-Walter, F., Lucien, N., Olivès, B., Gobin, R., Rousselet, G., Kamsteeg, E-J.,
674	Ripoche, P., Deen, P. M. T., Cartron, J-P. and Bailly, P. (1999). At physiologi-
675	cal expression levels the Kidd blood group/urea transporter protein is not a water
676	channel. J. Biol. Chem. 274, 30228-30235.
677	Siebens, A. W. and Kregenow, F. M. (1985). Volume-regulatory responses of Am-
678	phiuma red cells in anisotonic media. The effect of amiloride. J. Gen. Physiol. 86,
679	527-564.
680	Soegaard, L. B., Hansen, M. N., van Elk, C., Brahm, J. and Jensen, F. B. (2012).
681	Respiratory properties of blood in the harbor porpoise, Phocoena phocoena. J.
682	<i>Exp. Biol.</i> 215 , 1938-1943.
683	Solomon, A. K. (1968). Characterization of biological membranes by equivalent pores.
684	J. Gen. Physiol. 51, 335s-364s.
685	Solomon, A. K. and Chasan, B. (1980). Thiourea inhibition of urea permeation into
686	human red cells. Fed. Proc. 39, 957.
687	Solomon, A. K., Chasan, B., Dix, J. A., Lukacovic, M. F., Toon, M. R. and Verkman,
688	A. S. (1983). The aqueous pore in the red cell membrane: band 3 as a channel for
689	anions cations nonelectrolytes and water. Ann. N. Y. Acad. Sci. 414, 97-124.
690	Toyoshima, Y. and Thompson, T. E. (1975). Chloride flux in bilayer membranes:
691	Chloride permeability in aqueous dispersions of single-walled bilayer vesicles.
692	Biochemistry. 14, 1525-1531.
693	Verkman, A. S. and Mitra, A. K. (2000). Structure and function of aquaporin water
694	channels. Amer. J. Physiol. Ren. Physiol. 278, F13-F28.
695	Vreeman, H. J. (1966). Permeability of thin phospholipid films. Proc. Kon. Nederl.
696	Akad. Wet. 69, 564-577.
697	Wartiovaara, V. (1949). The permeability of the plasma membranes of Nitella to nor-
698	mal primary alcohols at low and intermediate temperatures. Physiol. Plant. 2, 184-
699	196.
700	Wieth, J. O., Funder, J., Gunn, R. B. and Brahm, J. (1974). Passive transport path-
701	ways for chloride and urea through the red cell membrane. In Comparative Bio-
702	chemistry and Physiology of Transport (ed. L. Bolis, K. Bloch, S. E. Luria and L.
703	Lynen), pp. 317-337. Amsterdam: North-Holland Publishing Company.

- Wieth, J. O. and Brahm, J. (1977). Separate pathways to water and urea in red blood
 cells? A comparative physiological approach. *XXVIIth Int. Congr. Physiol. Sci.*Abstract 1.06.27
- Wu, B. and Beitz, E. (2007). Aquaporins with selectivity for unconventional permeants. *Cell. Mol. Life Sci.* 64, 2413-2421.
- Yang, B. and Verkman, A. S. (1998). Urea transporter UT3 functions as an efficient
 water channel. Direct evidence for a common water/urea pathway. *J. Biol. Chem.*273, 9369-9372.
- 712 Yang, B. and Verkman, A. S. (2002). Analysis of Double Knockout Mice Lacking
- 713 Aquaporin-1 and Urea Transporter UT-B. Evidence for UT-B-facilitated water
- transport in erythrocytes. J. Biol. Chem. 277, 36782-36786.
- 715 Zeuthen, T. (2010). Water-transporting proteins. J. Membr. Biol. 234, 57-73.

716	FIGURE LEGENDS
717	Fig. 1. A semilogarithmic plot of representative examples of ³⁶ Cl efflux under self-
718	exchange conditions at pH 7.2-7.5 and 25°C in RBC of chick, duck, Amphiuma, dog,
719	and human. The logarithmic ordinate expresses the fraction of tracer that remains in the
720	cells at a given time (abscissa). The efflux rate equals the numerical value of the slope
721	of the curve. The chloride concentration was 127 mM in Amphiuma RBC experiments
722	and 150 mM in the other RBC experiments. The efflux rate in dog RBC (dashed line)
723	was estimated by interpolation of data obtained at 38°C and 0°C, and an E_A of 89.6 kJ
724	mol ⁻¹ (cf. Table 3).
725	
726	Fig. 2. A semilogarithmic depiction (see details in legend to Fig. 1) of representative
727	examples of [¹⁴ C]urea efflux under self-exchange conditions in RBC from chick, duck,
728	Amphiuma, dog, and human at 25°C and pH 7.2-7.5. The experiments were performed
729	at 1 mM urea.
730	
731	Fig. 3. Concentration dependence of P_{urea} under self-exchange conditions in RBC from
732	five species at 25°C and pH 7.2-7.5. The decline of P_{urea} with increasing urea concentra-
733	tion in RBC of dog, human, and Amphiuma reflects saturation kinetics of urea trans-
734	port. Each point on the curves is an average of 2-5 efflux experiments as those shown in
735	Fig. 2. Standard deviations are shown in experiments where they exceed the size of the
736	symbols (dog).
737	
738	Fig. 4. A semilogarithmic plot (see details in legend to Fig. 1) of representative exam-
739	ples of diffusional efflux of ${}^{3}\text{H}_{2}\text{O}$ under self-exchange conditions in RBC from chick,
740	duck, <i>Amphiuma</i> , dog, and human at 25°C and pH 7.2-7.5.

TABLES

1 2

3 Table 1. RBC volume (V), water volume (V_w), and area (A) of chick, duck, Amphiuma,

4 dog, and human at physiological conditions

	Chick ^a	Duck	<i>Amphiuma^b</i>	Dog ^c	Human ^c
$V \times 10^{12} \text{ cm}^3$	128	175	6500	67	87
$rac{V_w}{V}$ (%)	68	68	68	68	70
$A \times 10^8 \text{ cm}^2$	175	190	5000	117	142
$\frac{V_w}{A} \times 10^5 \mathrm{cm}$	5.0	6.3	8.9	3.9	4.3

1 Table 2. Chloride, urea and diffusional water permeability of RBC from chick, duck,

	cm s ⁻¹ ×10 ⁴	cm s ⁻¹ × 10 ⁶	$\mathrm{cm} \mathrm{s}^{-1} \times 10^3$
Chick	0.94 (0.03, n=2)	0.84 (0.02, n=3)	0.84 (0.19, n=5)
Duck	2.15 (0.06, n=2)	1.65 (0.33, n=6)	5.95 (1.17, n=11)*
Amphiuma	1.64 (0.06, n=2)	29.5 (2.9, n=4)*	0.39 (0.09, n=2)
Dog	1^{a}	467 (37, n=3)*	3.13 (0.57, n=10)*
Human	1.42 (0.18, n=6)	260 (7, n=4)*	2.35 (0.09, n=4)*

2 *Amphiuma*, dog, and human at 25°C and pH 7.2-7.4.

The numbers are Mean (SD). P_{urea} was determined at 1 mM urea. ^aCalculated by interpolation of P_{Cl} values obtained at 0 and 38°C, and an E_A of 89.6 kJ mol⁻¹. P_{urea} and P_d values, respectively, were compared by means of one way ANOVA with multiple comparisons versus chick RBC as control group. *Indicates that the value is significantly different (p<0.05)

- 1 Table 3. Apparent activation energy of chloride and urea self-exchange and diffusive
- 2 water transport in RBC from five species

	Chick	Duck	Amphiuma	Dog	Human
			E_A		
		(k	$J \text{ mol}^{-1}$)		
Tp. (°C)	0-40	4-40	0-25	0-38	0-38
Chloride	96.4-	117.8 (3.9,	74.9 (3.8,	89.6 (0.7,	83.8-125.7 ^b
	138.5 ^a	n=14)	n=8)*	n=12)	
Urea	71.2 ^a	69.6 (2.6,	53.3 (4.3,	Not det.	12 ^c
		n=20)	n=15)*		
Water	41.9 ^a	34.9 (4.2,	32.1 (6.2, n=6)	Not det.	21 ^d
		n=26)			
^a Brahm and	Wieth (1977)	, ^b Brahm (1977), ^c Brahm (1983b),	^d Brahm (1982). The num-
bers are Mea	an (SD). *Sig	nificantly differ	ent from chick (Stu	dent's t-test, p	< 0.05)

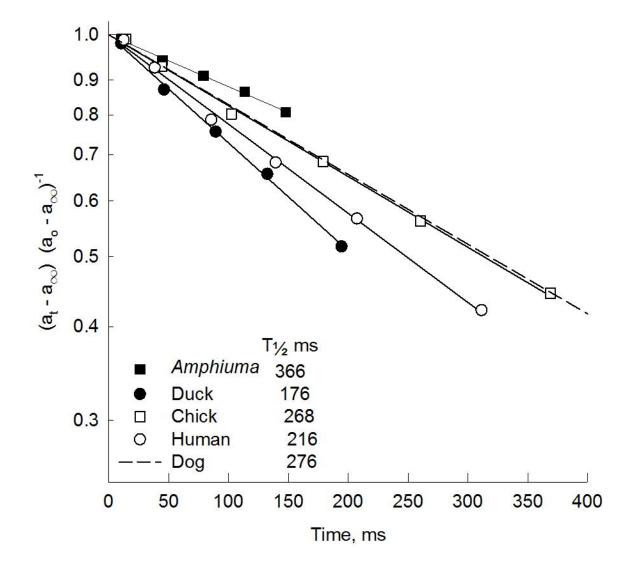
1 Table 4. Half saturation constant ($K_{1/2}$) and maximum urea transport (J_{urea}^{max}) in RBC of

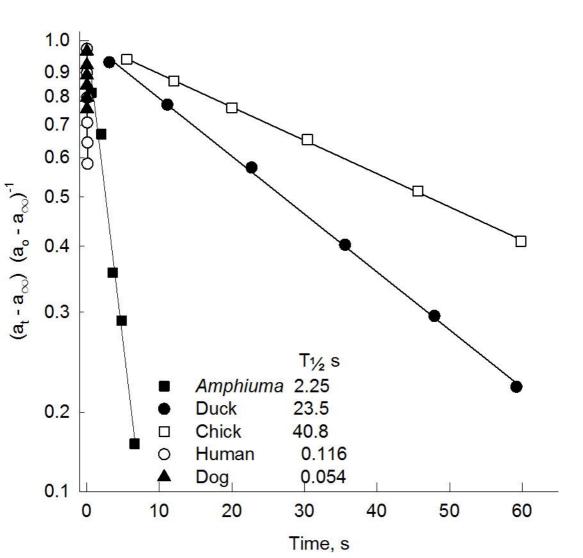
2	Amphiuma means,	dog, and human at 25°C and pH 7	.2-7.5
-	11p		

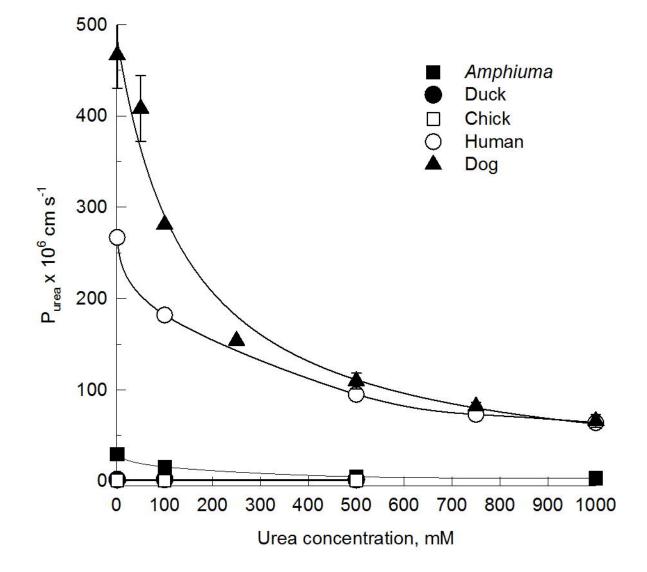
	<i>K</i> _{1/2} mM	J_{urea}^{\max} mmol cm ⁻² s ⁻¹ ×10 ⁶
Amphiuma means	127	3.5
Dog	173	75
Human	345	83
Human ^a	334	82
^a Brahm (1983b)		

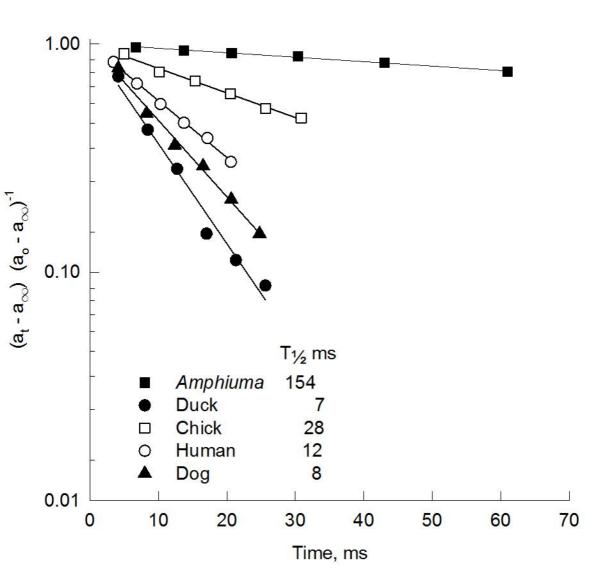
- Table 5. Urea and diffusional water permeability of RBC from three human donors at 1
- 2 25°C and pH 7.2.

	P _{urea}	P_d	$P_d P_{urea}^{-1}$
	$\mathrm{cm} \mathrm{s}^{-1} \times 10^4$	cm s ⁻¹ ×10 ³	
J. B.	2.60 (0.07, n=4)	2.35 (0.09, n=4)	9.0
J. B.	$2.67 (0.05, n=4)^{a}$	2.4 (0.2, n=18) ^a	8.9
J. S.	5.88 (0.26, n=4) ^{a*}	2.45 (0.16, n=6)	4.2


^aBrahm (1983b). *C_{urea}* was 1 mM. The numbers are Mean (SD). *Significantly different from J.B. (Student's t-test, p<0.01)


3 4


		Chick	Duck	Amphiuma	Dog	Human
Chloride	DIDS	>99 ^a	99 ^b	>99 ^d	>99 ^e	>99 ^h
	DNDS				>99 ^f	>99 ^h
	Phloretin	>99 ^a	>99 ^b	>99 ^d		>99 ^h
Urea	PCMBS/PCMB		0^{b}		>95 ^c	>90 ⁱ
	Phloretin	0^{a}	0 ^b	>99 ^c		>99 ⁱ
Water	DIDS/DNDS					0 ^j
	PCMBS/PCMB	0^{a}	~81 ^c		~67 ^g	~50 ^j
	Phloretin	0^{a}				0 ^j


1 Table 6. Inhibition (%) of solute transport in RBC from five species

^aBrahm and Wieth (1977). Experimental temperature was ^b0°C, ^c25°C, ^d10°C, and ^e37°C. ^fEstimated from a determination of the half inhibition constant K_I of 7 µM in the concentration range 0-50 µM. The value is close to a $K_I = 6$ µM as determined in human RBC by Gasbjerg et al. (1993). ^gBrahm et al. (1993). ^hGasbjerg et al. (1993). ⁱBrahm (1983b). ^jBrahm (1982). All experiments were carried out at pH 7.2-7.5.

