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SUMMARY

Measurements of the cross-sectional geometry and length of bones from
animals of different sizes suggest that peak locomotory stresses might be as
much as nine times greater in the limb bones of a 300 kg horse than those of
a o-10 kg chipmunk. To determine if the bones of larger animals are stronger
than those of small animals, the bending strength of whole bone specimens
from the limbs of small mammals and bipedal birds was measured and
compared with published data for large mammalian cortical bone (horses
and bovids). No significant difference (P > 0-2) was found in the failure
stress of bone over a range in size from 0-05-700 kg (233 + 53 MN/m1 for
small animals compared to 200 ± 28 MN/m2 for large animals). This finding
suggests that either the limb bones of small animals are much stronger than
they need to be, or that other aspects of locomotion (e.g. duty factor and
limb orientation relative to the direction of the ground force) act to decrease
peak locomotory stresses in larger animals.

INTRODUCTION

An important assumption made by allometric studies of vertebrates is that the
material strength of bone is the same for both large and small animals (McMahon,
1975 a; Alexander, 1977; Alexander, Maloiy, Hunter, Jayes, & Nturibi, 1979). This
assumption has not been tested directly, but it seems reasonable because measure-
ments of the strength of compact bone specimens from large mammals have yielded
fairly uniform results (see Currey, 1970, for a review). Moreover, both the histology
and the organic and mineral composition of different types of compact bone tissue,
such as lamellar, woven and Haversian bone, are generally similar for a variety of
vertebrates studied (Enlow & Brown, 1957, 1958; Bourne, 1972).

Scaling arguments suggest, however, that the material strength of bone may vary
with body size. Geometric similarity provides the simplest description of how
animals change with size. To maintain the same shape, all linear dimensions, such as
length (/) and diameter (d), are uniformly proportional to body mass (Mb) to the one-
third power and area dimensions are proportional to A/J"67. Galileo (see Thompson,
JQ15) was probably the first person to observe that if animals are geometrically
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scaled replicas of one another, with the same physical proportions and using the same
materials, there is a limit to how large structures and animals can be built without
failing under their own weight. Discussing the 'principle of similitude', d'Arcy
Thompson (1917) later observed that although animals appear to scale in a regular
way with size, shape changes are involved, so that large animals appear more robust
than small animals. Recent empirical data have shown however that geometric simi-
larity is maintained in the skeletal dimensions of mammals varying over a wide size
range. Alexander, Jayes, Maloiy & Wathuta (1979) measured the lengths and dia-
meters of the principal limb bones from 37 species of terrestrial mammals, represent-
ing seven orders, that ranged in size from a shrew to an elephant. Despite differences
in the animals' external shape, the empirical results over the entire size range were in
agreement with what would be predicted by geometric similarity (/ oc M^36 and
d oc MS"38). These exponents are slightly greater than the predicted value of 0-33,
however, showing that larger animals do tend to have proportionately larger bones.
This is consistent with the finding that skeletal mass scales to Ml"09 (Prange, Anderson
& Rahn, 1979).

We can use these allometric relationships to predict the stress developed in the
limb bones of an animal simply supporting its own weight. In the case where the
forces acting on a bone load it in axial compression (see Fig. id) the compressive
stress («rc) acting in the bone's cortices will be:

(1)

where Fc is the compressive force acting on the bone and A is its cross-sectional area.
In the case where the forces acting on a bone exert a bending moment (force times the
length of the moment arm) about the bone's midshaft (see Fig. i&) the bending
stresses (crb) developed at the surface of the bone's cortices, based on linearly elastic
theory, will be: „ .

°6 = ^ — (2)

where Fb is the bending force, r is the moment arm, c is the distance from the neutral
plane of bending to the surface of the bone's cortex, and / is the second moment of
area of the bone at its midshaft.

This assumes of course that an animal's skeleton is designed to resist static gravita-
tional forces, which seems unlikely. Because animals presumably are built to move
about, dynamic forces must be an important influence on the design of the skeleton as
well. McMahon (1977) has argued that the peak force exerted on the ground by an
animal's limb is independent of size for animals running at their trot-gallop transition.
Accordingly, if we assume that the peak dynamic forces that act on the limb bones of
an animal during locomotion are a constant multiple of the force exerted due to
gravity acting on the animal's mass (Fw = Mbg) and that this proportionality is
independent of size, so that Fe and Fb are both proportional to FJ,"0, then both equa-
tions (1) and (2) still hold.

Because A oc d2 oc F%n (according to the empirical results of Alexander, Jayes et al.
1979) equation (1) shows that:
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Fig. 1. (a) shows the two principal loading situations discussed in the text, axial compression
(Fc) and antero-posterior bending (F6), acting on a tibia. (6) is a drawing of the cross-section
of the tibia at its midshaft (A-A'), the point at which the bones were broken, and shows how
the second moment of area (7) was computed, (c) and (</) show the stress fields acting across the
cortex of the bone at the level of its midshaft for axial compression and sagittal bending,
respectively, assuming that cortical bone is homogeneous and linearly elastic.

The corresponding allometric relations for determining the stress due to bending
based on Alexander, Jayes el al.'s (1979) data are: r oc F™5, c oc Ffj38, and / oc F%".
Equation (2) can then be reduced to:

(4)<Tb

which is very similar to the result obtained for stresses developed due to compressive
forces acting on the bone.
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This means that, for example, a 1000-fold increase in body mass will result \d
a seven-fold increase in the peak compressive stress and a 6-5-fold increase in the
peak bending stress acting in the limb bones of the larger animal. If the material
strength of bone loaded in compression or bending is constant, this implies that large
animals have a smaller safety margin and develop stresses that are much nearer their
fracture (or ultimate) strength than do small animals, or that small animals are
'wasteful' of bone tissue and are built to have unreasonably high safety margins.

However, if the material strength of bone increases with increasing size, then
a similar margin of safety could be maintained for large and small animals. Although
other features of the skeleton's support of dynamic forces may effect the stress that
acts in a bone's cortex, such as the orientation of the limb relative to the direction of
the ground force exerted at the foot and the fraction of the stride period that a limb is
in contact with the ground (defined as the duty factor); a critical study is necessary
to ascertain whether there is in fact a significant difference in the material strength of
bone between large and small animals.

To test this, the fracture strength was determined for the principal limb bones
from a variety of species of small mammals and bipedal birds (body mass from
O-O5O-O-622 kg), which were loaded in three-point bending and compared with
values reported for large mammals. Bending was chosen because of its relative ease
and accuracy as a mechanical test of strength, especially for whole bones, and because
it has been shown that the limb bones of a variety of animals are most often subjected
to bending forces during locomotion; both compressive and torsional loads are
typically much smaller (Lanyon & Baggott, 1976; Lanyon & Bourn, 1979; Alexander
& Vernon, 1975; and A. A. Biewener, J. Thomason, A. E. Goodship & L. E. Lanyon,
in press).

MATERIALS AND METHODS

Specimens of the following species were weighed and killed: three species of
rodents which run quadrupedally - rats (Rattus norvegicus), chipmunks (Tamais
striatus), and ground squirrels (Spermophilus tridecemlineatus); one species of rodent
that hops bipedally - kangaroo rats (Dipodomys spectabilis); and two species of
bipedal birds - Chinese painted quail (Excalfatoria chinensis) and bobwhite (Colinus
virginianus). The principal limb bones were dissected and placed in physiological
saline. Care was taken not to scratch or cut into the cortex of the bones to avoid
introducing stress concentrations during testing. The bones were either tested
immediately after dissection or frozen in physiological saline at — 25 °C. Frozen
bones were allowed to reach room temperature before being tested. All specimens
were tested at 21 °C.

The apparatus used to break the bones is shown in Fig. 2. The load was applied
at a uniformly increasing rate to the distal end of the bone via a stainless steel wire
looped about the distal end of the bone. The bending force was applied by screwing
the drive rod through the bar to which the wire was attached. The proximal end of
each bone was fixed rigidly in a mold of dental methacrylate. Care was taken to keep
the bones moist during the fixation period and during each test. The force was
measured by differential output from two metal foil strain gauges attached to
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Fig. 2. A schematic drawing of the device used to load the whole bone specimens to failure
in three point bending. The applied bending force (Fb), moment arm (r) and the reaction force
(R) are shown. The drawing to the right shows an end-on view of the threaded drive rod and
its assembly for applying the bending moment to the distal end of the bone, drawn from
a cross-section taken at Z'-Z. The lower left inset shows a representative record of the force
trace for a ground squirrel femur.

steel beam across a Wheatstone bridge circuit using a strain gauge bridge amplifier
(model no. 2120, Vishay Instruments, Inc.). The loading device was calibrated with
known weights before and after each series of tests was performed. The response of
the device was linear over the range of forces applied. Each bone was adjusted so that
a steel rod exerted the reaction force at the bone's midshaft; the rod was 0/5 mm in
diameter to minimize the error due to local stress concentration. The length of the
moment arm was measured from the centre of the rod to the point of application of
the bending force.

After each test the broken ends of the bone were embedded in epoxy resin and
ground down until a smooth cross-section was attained as close as possible to the site
of fracture. The cross-sections were photographed and projected onto a screen with
known magnification. Tracings of the cross-sections about the periosteal and endo-
steal surfaces were then analysed using a digitizing table and PDP-11 microprocessor
to determine the cross-sectional area (̂ 4), the centroid of the cross-section (O'), the
second moment of area (/), and the maximum distance from the neutral plane of
bending to the tensile surface of the bone's cortex (c) (see Fig. 1). The means of the
two values for c and / from the proximal and distal segments of each bone were used,
along with the moment arm (r) and the bending force (Fb), to calculate the ultimate
Atress of the bone according to equation (2). Using this same procedure, measure-
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ments of cross-sectional area and second moment of area were also made of a series ofij
additional bones to determine more accurately how each of these parameters scales to
body mass, rather than deriving the allometric relationships based on the data for
diameter given by Alexander, Jayes et al. (1979). These measurements were made at
the midshaft of each bone, where stresses due to bending are likely to be greatest.

GLOSSARY OF SYMBOLS USED IN THE TEXT

/ length;
d diameter;
A cross-sectional area;
r moment arm about a bone's midshaft (equals one-half the bone's length);
c distance from the neutral axis to the bone's cortex;
/ second moment of area;
O' centroid of the bone cross-section at its midshaft;
Mb body mass;
g acceleration due to gravity;
Fw force exerted due to the effect of gravity on an animal's body mass;
Fo compressive force exerted on a bone;
Fb bending force exerted on a bone;
<rc stress due to compression;
crb stress due to bending;
(TM fracture stress.

RESULTS

The allometric equations determined from a least squares linear regression analysis
of the data for cross-sectional area and second moment of area (for bending in the
antero-posterior plane) show that: A oc M$n and / oc Ml43. These measurements
were made for a series of bones from eleven species of mammals ranging in size from
0-038-276 kg. The data are presented in Table 1. Graphs of area and second moment
of area plotted against body mass on logarithmic co-ordinates are shown in Fig. 3 a
and b, respectively. The regression lines calculated from the data are drawn in each
case. The equation of each line and its coefficient of determination are included
as well.

Using these values for the exponents relating cross-sectional area and second
moment of area to body mass, the scaling of peak compressive and peak bending
stresses to the force exerted due to the effect of gravity on body mass become:

(5)
and

<rb oc K28- (6)

The results of the bending tests show that the mean values of the ultimate bending
strength of the different limb bones tested within each group were not significantly
different (P > o-i). Nor was the mean value of ultimate bending strength significantly
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P'able 1. Cross-sectional area (A) and second moment of area (I) measured at the mid-
shaft of the principal limb bones indicated. Each value presented represents the mean of
each bone measured

Animal

Mouse

Kangaroo rat

Ground squirrel

Rat

Guinea pig

Cat

Colobus monkey

Dog*
Man+

Horse

Body mass (kg)

0-038

0-103

0-117

0-522

0630

3'Sa

12

2 0

60

276

Bone

Femur
Tibia
Humerus
Femur
Tibia
Femur
Tibia
Humerus
Femur
Tibia
Humerus
Femur
Tibia
Humerus
Femur
Tibia
Humerus
Femur
Tibia
Humerus
Radius
Femur
Tibia
Tibia
Metatarsus
Radius
Metacarpus

A (mm1)

1 6 3
o-88
6-86
3-60
3 8 4
2-03
i-34
2 1 7
S-28
8-42
663
9 3 6
6 1 2
5-56
33'8
37-S
33-9

86-a
70-8
62-0
8 9 0

325-2
2468
808
464
641
4S4

/(mm*)

0-73
0-82
0-072
i-S4
2-17
0-96
o-57
0-92
3-n
7-14
9-53

I I - I O

5-O7
5-6o

144-2
152-9
IIQ-8
817-1
6817
381-0
970
16400
16700
70000
22300
36100
19400

No

4
4
4
4
4
4
4
4
6
6
6
4
4
4
4
4
4
2

2
2

4
1 2 0

1 2 0

3
3
3
3

• Data from Carter, Harris, Vasu & Caler, 1981.
f Data from C. B. Ruff, personal communication.

different between the two gioups: 228 ± 46 MN/ma (± S.D.) for the 9mall mammals
and 239 + 69 MN/m2 (+ s.D.) for the small birds (P > o-i). The mean value for the
ultimate bending strength of all of the bones tested was 233 ± 53 MN/m2 (± s.D.).
These data are presented in Table 2 for the small mammals and in Table 3 for the
small birds. In the case of the rat femora, tibiae and humeri, a series of twelve bones
each were broken to assess the reliability of the experimental technique employed.
The standard deviation about the mean was less than 14% of the mean for each
series of bones. The data for the small mammals and birds can be compared with the
values of ultimate bending strength reported for large mammals which are presented
in Table 4, along with additional data reported for rat femora and tibiae.

A graph of ultimate bending stress plotted against body mass on logarithmic
co-ordinates (Fig. 4) shows that there is no difference in the bending strength of
bone over a range in size from 0-05-700 kg. The slope of the regression line for the
data is — o-ou (/?2 = 0-046) and is not significantly different from zero. The dashed
line represents a plot of bending strength v. body mass that would be necessary to
maintain a uniform safety margin for animals of different size assuming that peak

stress scales to i^28, according to the results for cross-sectional area and
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Fig. 3. (a) a graph of bone cross-sectional area (measured at the midshaft) plotted against body
mass on logarithmic co-ordinates. (6) a graph of the second moment of area (measured at the
bone's midshaft) for bending in the antero-posterior direction plotted against body mass on
logarithmic co-ordinates. Each point plotted represents the mean of the values determined
for each bone measured from each species. The different bones measured are denoted by
their respective symbols ( • femur, © tibia, © humerus, • radius, • metacarpus, and
A metatarsus). A total of 27 values comprising eleven species are shown in each graph. The
equation of the line obtained from a least squares linear regression analysis for area v. body
mass (Mi,) is:

log A = 0716 logAf^ + log 1-06, R* = 0-98,

and for second moment of area v. body mass it is:

log/ = 1-426 logM6 + log i-22, R* = C98.
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Table 2. Ultimate bending strength of small mammalian whole bone

specimens loaded in an antero-posterior direction

Ultimate stress (MN/m'±s.D.)

297

Animal

Chipmunk
Ground squirrel
Rat
Kangaroo rat
Totals

Mean body
mass (kg)

0-094
0-137
0-522
0097

—

Femur

263-2±4i-7
2i9-o±23'5
253-1 ±16-5
aio-7±39-4

a36-5±37-o

Tibia

3O3-9 ±49'3
184-6121-4
233-1 ±3*-9
2i8-6±33-7

23S'i±48-4

Humerus

i92-S±42-4
171-8130-3
257S13O-7

219-9150-7

No

4
4

12
8

—

Table 3. Ultimate bending strength of whole bone specimens from small

bipedal birds loaded in an antero-posterior direction

Ultimate stress (MN/m'ls.D.)

Animal

Painted
Bobwhi
Totals

quail
te

Mean body
mass (kg)

0-051
0173

—

Femur

3ii-o±56-8
193-3 ±20-4
252-2170-7

Tibia

170-5 ±36-9
*94-o±65-7
232-3183-4

Metatarsus

245-2 ±28-1
336-3 ±539

235-8145'6

No

4
6

—

Table 4. Ultimate bending strength of bones from large mammals

Animal

Human

Human
Human
Horse

Cow

Ox

Rat

Rat

Body
mass*
(kg)

70

70
70

4 0 0

700

700

o-35

o-35

Bone

Femur

Tibia
Humerus
Tibia
Femur
Femur

Femur

?

Femur

Femur

Test specimen

Machined compact
bone (wet)

Machined compact
Machined compact
Machined compact
Whole bone (wet)
Machined compact
bone (wet)

Machined compact
bone (wet)

Machined compact
bone (wet)

Whole bone (wet)

Machined compact
bone (dry)f

Ultimate
bending

stress
(MN/m'±s.D.)

i73-5lio-8

199-518-7
190-919-6
1891
186-214-9
i86-8±5-s

264-120-5

227

182

186-5133-6

Reference

Yamada, H. (1973)

Dempster & Coleman (1961)
Sedlin & Hirsch (1966)
Yamada, H. (1973)

Burstein et al. (1972)

Currey (1976)

Engesaeter, Ekeland &
Langeland (1979)

Kimura, Amtmann, Doden
& Dyama (1979)

• Approximate adult body weights were taken from E. Walker's 'Animals of the World', 3rd edition,
«975-

t Tested in compression.

second moment of area determined in the present 9tudy. The equation for the
dashed line and its ^-intercept were calculated using a value of 240 MN/m! for the
ultimate bending strength of bone from a 1000 kg animal.

Both the present data and the values of ultimate bending strength for large mammals
•bow a fair amount of variability. The variability between different studies is due in
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Fig. 4. A graph of the ultimate bending strength of whole bone specimens plotted against
body mass on logarithmic co-ordinates. The data for small mammals and bipedal birds are
presented along with those for large mammals. The solid line represents the linear regression
done on the data for each bone tested within each species. Its slope is not significantly different
from zero (m = —o-on, R* = O'O46). The dashed line shows the change in the ultimate
bending strength of bone that would be necessary to maintain a uniform safety margin between
it and the peak locomotory stress predicted by scaling arguments (m = 0-28). The equation
was calculated using a value of 240 MN/m1 for a 1000 kg animal.

part to the different test conditions and specimens used. These are given for each set
of data shown. Considering the likelihood of error introduced in the determination of
the geometrical parameters necessary to calculate the bending strength of such small
bones, as whole test specimens, the values obtained here correlate quite favourably
with those reported for more uniform, precisely machined specimens of cortical
compact bone from large mammals. The difference between the means of each group
of data is not statistically significant (P > 0-2), indicated by a slope close to zero for
the regression line in Fig. 4.

The slightly higher values of ultimate bending stress obtained in the present
study most likely reflect the fact that whole bone specimens were used instead of
machined test specimens of compact bone. For a given cross-sectional area, a 'hollow
cylinder' characteristic of a whole bone has a larger second moment of area (/) than
a solid rod, and will therefore resist greater bending loads. Any initial curvature of the
whole bone in the direction in which the bending force was applied will additionally
lead to an overestimation of the ultimate bending stress calculated for the tensile
cortex where the bones typically fail (Kent, 1946). Finally, the values obtained here,
as well as those determined in other studies of the bending strength of compact bone,
are larger than what would be expected due to tensile failure alone. Burstein, Currey,
Frankel & Reilly (1972) have shown that yielding effects inherent in three-point
bending tests result in plastic flow within the tensile and compressive zones of the
test specimen, which causes an increase in the ultimate stress measured.



Bone strength in small mammals and bipedal birds 299

DISCUSSION

The results presented here indicate that the bending strength of vertebrate bone
varies little, if any, over a wide range in body size. This would suggest that large
animals have much lower safety factors than small animals, given that their skeletons
scale geometrically. However, proportionately greater stresses in larger animals could
be avoided if the diameter dimensions of their bones increased proportionately more
than the linear dimensions.

McMahon (1973, 1975a) has recently argued an alternative theory of scaling,
'elastic similarity', which assumes that animals are built to undergo similar elastic
deformations in response to gravitational loads. His theory predicts that length
scales to diameter to the two-thirds power, or that / oc F^6 and d oc Ffc38, so that
animals become more robust as they increase in size. Accordingly, only a five-fold
increase in peak compressive stress {ac oc F%,u) and a two-fold increase in peak
bending stress (cr6 oc i^11) over a range in size from 1-1000 kg would be predicted to
occur. Limb bones of members of the family Bovidae ranging in body mass from 4-4
to 500 kg have been reported to scale according to the predictions of elastic similarity
(McMahon, 19756; Alexander, 1977).

However, when a more diverse group of mammals is considered, representing
several orders which range in size from 0-003-2500 kg, measurements of length and
diameter are found to scale uniformly to body mass (Alexander, Jayes et al. 1979), in
agreement with the predictions of geometric similarity. Both the measurements of
cross-sectional area and second moment of area determined in the present study for
eleven species ranging in size from 0-038-276 kg scale closely with the data reported
by Alexander, Jayes et al. (1979). The allometric proportionalities calculated from our
data are A oc F?B

n and / oc Fl*3 compared to A oc FV* and / oc F£" derived from
their data for diameter. These results indicate that the mammalian skeleton is in fact
geometrically similar over a wide range in size, so that a proportionately increased
level of stress with body size would be predicted based on bone geometry alone.

Large animals appear to compensate for their bone geometry by proportionately
reducing the peak force exerted on the ground as size increases. Alexander (1977) has
argued that peak stress scales independently of body mass and has developed a model
which predicts that large animals have larger duty factors (defined as the fraction of
the stride period that a given limb is in contact with the ground) moving at a given
speed than smaller animals. Data for ungulates running at their top speeds (minimum
duty factors) show that duty factor scales proportional to F^n for the forelimb and
F^u for the hindlimb (Alexander, Langman & Jayes, 1977). Assuming that an inverse
relationship exists between peak ground force and duty factor, a proportionately
larger duty factor in large animals would mean that they exert peak ground forces
that are a lower multiple of their body weight than smaller animals. Recent force-
plate data obtained for a variety of different sized animals running or hopping at high
speeds indicates that the peak ground force acting on the foot is not a constant
multiple of an animal's body weight, but does in fact decrease with increasing size
(Cavagna, Heglund & Taylor, 1977). Peak ground forces of up to 3 xFw and 2-5 xFw

.have been measured for a kangaroo rat (o-io kg) hopping and a chipmunk (o-n kg)
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galloping, respectively, at a steady speed (Heglund, 1979); whereas a horse (300 kg)
exerts only about I-JXFW at high speeds (Biewener et al. in press). It seems then that
the peak forces exerted on the individual limb bones may similarly decrease with
increasing size. However, this two-fold difference in peak ground force alone cannot
explain the greater than nine-fold difference in peak stress predicted by the empirical
data indicative of geometric similarity over this size range.

It seems unreasonable, though, that small animals are built to have much greater
safety factors than large animals. For animals to have evolved over such a great range
in size, as in mammals, a uniform margin of safety would be expected. The scaling
arguments presented here assume that the forces and stresses which are important in
affecting bone architecture are those imposed during locomotion at a steady speed.
However, it seems likely that small animals may undergo much greater accelerations
of their centre of mass during normal activity than large animals. Such accelerations
or decelerations may be frequent enough and of significant magnitude to influence
the design of the skeleton. Moreover, other features of an animal's skeletal system
may affect the force exerted on the limb bones compared to the force exerted at the
foot, such as bone curvature and limb orientation relative to the vector of ground
force. These aspects of limb morphology along with empirical measurements of in
vivo stresses developed during locomotion must also be studied to determine whether
large animals do in fact operate under lower safety margins than small animals.

This work was supported by NIH Training Grant T32GM07117 awarded to
Harvard University and NIH Grant AM18140 awarded to Dr C. Richard Taylor.
The author wishes to express his appreciation to Dr Taylor and Dr Norman Heglund
for helpful comments while writing the manuscript.
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