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SUMMARY

Cockroaches, Gromphadorhina portentosa, were run at different speeds for
20 min on a miniature treadmill enclosed in a lucite respirometer while
oxygen consumption (Vo,,) was continuously monitored. The data collected
on these 5 g insects are remarkably similar to those obtained on vertebrates.

¥;,, rises rapidly with the onset of exercise; the ¢; on-response was about
1 min with steady-state reached within 4 min at the fastest speed, o-12 km/h.
Recovery was rapid; the ¢, off-response was 4-6 min, with total recovery
achieved in less than 1 h. The tracheal system appears to be a highly efficient
mode of O, conductance in contrast to the crustacean method of delivery
mvolvmg gllls and circulation.

0 (ml O,/g.h) at steady-state running varies directly with velocity (V).
The regression equation at 24 °Cis If), = 0°'45+4'92V. The Y-intercept,
at zero velocity, is 24 times the actual resting V), rate of o-1g ml O,/g.h.
Temperature does not change the slope of the regression line but shifts it up
or down in accordance with a simple Q,, effect. Incline running produces
no change% ~compared to level running.

The minimum cost of transport, the lowest V,, necessary to transport a
given mass a specific distance, is high in cockroaches (492 ml O,/g.km)
and comparable to that expected for a small quadrupedal or bipedal pedes-
trian vertebrate.

INTRODUCTION

Studies on comparative locomotion of terrestrial animals have been growing by
leaps and bounds. Special interest has been devoted to the field of pedestrian ener-
getics since the landmark papers of Tucker (1970), Taylor, Schmidt-Nielsen & Raab
(1970) and Schmidt-Nielsen (1972). In spite of recent attention to running vertebrates
including mammals, reptiles and birds (Taylor, 1973; Fedak & Seeherman, 1979),
remarkably little information is available for the great majority of animals in the
world, the invertebrates. Three papers are exceptions to the generalization: studies
on the land crab, Cardisoma guanhumi (Herreid, Lee & Shah, 1979), three species of
ants, Formica fusca, F. rufa and Camponotus herculeanus (Jensen & Holm-Jensen,
1980), and the pulmonate slug, Ariolimax columbianus (Denny, 1980).

The studies on ants, crabs, and slugs indicate that metabolic rate as measured by
oxygen consumption (¥, ) or carbon dioxide production (¥.,,) is linearly related to
.e velocity of running. This is also true for vertebrate locomotion on land (Taylor
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et al. 1970). Unfortunately, the potential usefulness of the above generalization ‘
marred by the fact that in none of the invertebrate studies was it possible to collec

data comparable to the steady-state running which is considered essential in vertebrate
experiments. In the case of the ants, animals were run for given periods of time and
the total CO, produced during the exercise bout was used to calculate ¥/ ,, (Jensen
& Holm-Jensen, 1980). This procedure assumes that there is little delay in reaching
a steady-state aerobic condition. However, without a continuous measurement of
V.0 this assumption can not be verified. Nevertheless, the assumption is probably
valid in view of the rapid response to flight demands seen in ¥, measured for insects
such as Drosophila (Chadwick & Gilmour, 1940). In the case of crabs and slugs where
continuous monitoring of ¥, was possible, it was clear that neither animal attained
a steady-state. Hence, both Herreid et al. (1979) and Denny (1980) calculated the
aerobic cost of running by integrating the total area under the ¥, curve during and
after running to estimate aerobic cost. The inclusion of O, debt in these calculations
does not seem justified when there is no evidence that the recovery O, is a measure
of energy expenditure during running. Certainly in vertebrates this position is no
longer considered valid (Brooks et al. 19714, b; Brooks, Brauner & Cassens, 1973;
Segal & Brooks, 1979; Hagberg, Mullin & Nagle, 1980).

Lack of steady-state running has forced the authors of the invertebrate experiments
to calculate a value called net cost of transport to compare with data on the minimum
cost of transport determined for vertebrates (Taylor et al. 1970). These cost estimates
are reputed to be the metabolic cost required to transport a gram of animal over a
1 km distance. Slugs appear to use 12 times more energy to travel a given distance
than similar-sized mammals (Denny, 1980), whereas ants and crabs are comparable
to the latter (Herreid et al. 1979; Jensen & Holm-Jensen, 1980). These results must
be viewed cautiously in view of the way ¥;,, or /{5, was determined especially when
O, debt is involved. Moreover, net cost of transport, even when calculated under
steady-state conditions, is not synonymous with minimum cost of transport (cf.
Taylor, 1973) and the difference between the two values rises in small animals with
relatively high metabolic rates. Also, it should be noted that small animals do not
approach the speeds necessary to attain the theoretical minimum cost of transport
values (cf. Taylor et al. 1970).

In order to broaden our understanding of terrestrial locomotion in general, and to
eliminate some of the problems plaguing earlier studies on invertebrates, we have
turned to the study of cockroaches. These animals are highly specialized for terrestrial
locomotion and some, such as the case of our expertmental animal, Gromphadorhina
portentosa, have lost their wings altogether. Moreover, cockroaches as representatives
of the Insecta have open circulation systems, tracheal respiration, and are six-legged
— a dramatic contrast to vertebrates. They seem ideal animals in which to study
comparative terrestrial locomotion, in the hope of demonstrating general principles
that may apply to other taxa. In this paper we present data on the metabolic rate of
cockroaches running freely on a treadmill. We have measured steady-state locomotion
at three different temperatures and have collected data on level and incline running.
In addition, we have calculated the minimum cost of transport for comparison with
vertebrates.
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MATERIALS AND METHODS
Animals

The experimental animals were adult male hissing cockroaches, Gromphadorhina
portentosa Schaum, weighing between 3-4 and 6-5 g. Females were not included
because reproduction and concomitant hormonal changes can influence metabolic
rate. The animals were raised in a communal cage in an environmental chamber
maintained at 25 °C, relative humidity of 759, and given food in the form of dried
puppy chow and water ad libitum. Once experiments began, the roaches were kept
individually in small plastic containers with food and water.

Apparatus

All experiments were conducted within an airtight lucite respirometer enclosing an
axle-driven latex treadmill belt. The later was powered by a DC gear motor located
outside of the chamber and controlled by a veriac capable of a speed range of 0-8-30
cm/sec. A switch was built into the system which allowed us to reverse the treadmill
in cases where roaches turned around in the chamber. Inflow and outflow gas ports
allowed for constant unidirectional circulation of fresh air into the respirometer. Room
air was continuously drawn through the 125 ml working section of the respirometer
at a rate of 56 ml/min. After passing through a drierite filter to remove water vapour,
gas leaving the respirometer was drawn into one sensor cell and flow meter of an
S-3A Applied Electrochemistry Oxygen Analyzer which was electrically interfaced
with a Linear Instruments Model 282 Integrating Chart Recorder. As a reference gas,
room air was directly passed at the same rate through a drying filter and into a second
sensor cell of the analyser. Thus, we were able to measure differences between the
percentage O, of the room air and the gas leaving the respirometer. This value multi-
plied by the flow rate gave us oxygen consumption (¥p,) of the roaches. Using these
values and the flow rate, we were able to calculate the instantaneous oxygen consump-
tion ¥, of the roaches corrected to conditions of STPD (see Bartholomew et al.
(1981), for the method).

Protocol

Single-speed experiments. The purpose of these experiments was to determine the
¥, of roaches running at different speeds on different days. Approximately ten
animals were tested at three speeds 0-03, 0-07 and o-12 km/h, the latter being the
highest speed this species could maintain for the experimental period. Individuals
were generally run at a single speed with a day of rest before being tested again. They
had previous experience with the treadmill during pilot studies and gave consistent
performances.

Experiments lasted approximately 110 min. A roach was removed from its cage,
weighed and placed into the respirometer. It rested in the chamber for 30 min during
which time ¥, was monitored. Typically, the ¥}, reached low, relatively constant
rates within 25 min.

The rest period was followed by an exercise bout. The treadmill was turned on and
"2 measured continuously for a 20 min exercise period. The animals generally ran

ell on the treadmill, maintaining their position well within the middle of the working
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section. Occasionally roaches became agitated, flipped over, or lodged against the back
of the chamber causing the experiments to be aborted.

After the exercise period was over and the treadmill was turned off, ¥}, continued
to be monitored for a recovery period of 60 min or until the O, consumption had
declined to a resting rate. Initial experiments were carried out at 23-6 + 0-6 °C (mean
+s.D.). In later experiments to determine the effect of temperature, we tested the
roaches at 15, 25 and 35+ 1 °C in an environmental chamber.

Multiple-speed experiments. 'The purpose of these experiments was to determine
V,,, of roaches as they were run sequentially at those different speeds during a single
test. The experiment began when a roach was weighed and placed into the treadmill
respirometer for a rest period of 30 min. The exercise bout lasted 15 min and con-
sisted of three stages. The treadmill was first turned on to the lowest speed 0-03 km/h
for 5 min, then increased to 0-07 km/h for 5 min, and followed by § min at o-12 km/h.
Recovery was not monitored.

Incline experiments. In order to determine if the ¥, would alter with the incline
of the treadmill, we followed the following experimental protocol. Roaches were
rested 30 min. Then they were run for 20 min at 007 km/h as ¥, was monitored.
During the first 5 min of the 20 min run the treadmill was level, followed by successive
5 min periods at +5§° +15° and +25° incline. In other experiments the same
procedure was followed for o°, —5° —15° and —25° slopes. Any runs where the
animal visibly slipped on the treadmill were discarded.

RESULTS

The resting 7, of the cockroach, G. portentosa was determined by calculating the
average of seven individuals for the 15 min just prior to exercise. At this time the
animals, having explored the chamber, were resting quietly, their only movements
being infrequent antennal cleaning manoeuvres. The resting ¥, was 0-19 ml O, g.h
+standard deviation of o-05. There was no apparent trend with body mass; all
animals had similar ;.. These data are comparable to other values collected for
insects (Keister & Buck, 1974). For example, Polacek & Kubista (1960) report a value
of 036 ml O,/g.h for the smaller roach, Periplaneta americana, and Bartholomew &
Casey (1977) published values of o-17 and 025 ml O,/g.h for two large tropical
beetles, Strategus aloeus and Stenodontes molarium.

Once the treadmill was turned on, the cockroaches rapidly adjusted to its motion
with no obvious difficulty in most cases. When animals lagged back far enough to
touch the rear of the treadmill chamber, they usually responded by moving forward
briskly. During walking or running, roaches did not display any obvious shift in gait.
This is consistent with the observations on P. americana which only changes gait at
very low velocities (Delcomyn, 1971). In G. portentosa the only apparent behavioural
change occurred between resting and walking. At rest, a roach would lie with its
abdomen on the substrate, while during locomotion it raised its body as it walked on
all six appendages in a typical tripod gait. At the end of the fast speed tests some
individuals showed evidence of fatigue. They occasionally stopped in their run,
carried their body closer to the substrate, maintained their spiracles in a wide open
position and showed exaggerated abdominal breathing movements.
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Fig. 1. Oxygen consumption (Vo,) of cockroaches running on a treadmill. The upper, middle
and lower curves represent roaches running at speeds of 0'12, 0-07 and o-03 km/h respectively.
Vertical bars represent g5 %, confidence intervals.

At the end of the experiment most roaches abruptly stopped moving and assumed
the resting posture. Some individuals began extensive grooming routines, especially
involving the antennae, but with little overall motion and apparent affect on the Vo,

Fig. 1 shows the rapid change of V,, once exercise was initiated. There were slight
differences in the time to reach a steady rate of O, consumption at the three different
velocities. The time to reach one-half of the steady-state ¥, value, #;, was about
1 min at the two lower speeds and about 2 min at the fastest speed. Steady-state 7,
was achieved by 4 min even at the highest speed. The lag in the animals’ I, response
is known as the O, deficit. Oxygen deficit is the difference between two values: (1) the
actual gradual rise in V5 which occurred as an animal began to run at a constant
velocity and (2) the abrupt rise in ¥}, which should occur if the steady-state ¥,
were reached instantly the moment the run began (e.g. Stainsby & Barclay, 1970).

The steady-state ¥, during the test depended directly upon the intensity of
exercise: locomotion at 0-03 km/h was 0'58 ml O,/g.h; at 007 km/h was o-81 ml
0,/g.h and at o1z km/h was 1-06 ml O,/g.h. When compared to the resting
metabolism, the exercise values are 31, 4°3, 56 times higher.

The V), during recovery was a direct function of the intensity of exercise. The #;
to recovery was about 4, 4, and 6 min for the slow, medium and fast velocity tests,
respectively. Complete recovery was achieved within 15, 30 and 45 min after the
cessation of exercise. When the recovery curves are plotted on a log scale, it appears
as if the low-speed data fit a simple exponential curve; the two higher speeds seem to
be described by a more complex curve of at least two phases: a fast exponential decline
in 7}, followed by a slower decrease. It is possible to compare the ‘O, debt’ with the
O, deficit values determined earlier by measuring the area under their respective

urves. The debt/deficit ratios for the three speeds are as follows: slow, 10-3;
iaedium, 6-9; fast, 6-0.
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Fig. 2. Oxygen consumption of cockroaches running at different velocities. Data for this
graph were obtained from steady-state running at a particular velocity. Data were either
collected from roaches running at one speed each day for 20 min (single-speed experiments)
or from roaches running successively at three different speeds for about 5 min at each speed
(multiple-speed experiments). Vertical bars represent 95 % confidence intervals.

Fig. 2 shows that the increase in Vo, with velocity (in km/h) was a direct linear
function of the speed of locomotion. The least-squares regression lines based on 25
runs was ¥, = 0-45+4:92V. The 959% confidence intervals for the slope and
Y-intercept are +2:19 and +o0-19. It should be noticed that this line when extra-
polated back to zero speed gives a reading of 0:45 ml O,/g.h or 2-4 times higher than
the actual resting ¥, of 019 ml O,/g . h.

Fig. 2 also shows the results of the multiple-speed experiments. The equation for
the least-squares regression is V,, = 0:34+6:96V. The 95% confidence intervals
for the slope and Y-intercept are +2:30 and + o-20. There is no significant difference
between the results of the single and multiple-speed experiments. Using the data
from the single-speed experiments (Fig. 2), we can calculate the cost of transport
(Tucker, 1970). This value is the amount of O, used to travel 1 km by 1 g of animal.
It is determined by dividing the steady-state F,_ by the speed of travel. Similar to
most pedestrian species (e.g. Taylor et al. 1970), the cost of transport in roaches falls
with velocity. Thus, for speeds of 003, 0-07, and o-12 km/h, the cost of transport,
progressively falls from 16-3 to g-g and to 8:2 ml O,/g.h. The cost of transport
approaches a minimum value as velocity increases; Taylor et al. (1970) have termed
this the minimum cost of transport (M,,). This value is equivalent to the slope of
the line relating ¥, to velocity seen in Fig. 2. Thus, the minimum cost of transport
for an average 5.2 g roach is 4:92 ml O,/g.km.

Fig. 3 illustrates the influence of temperature on locomotion. As expected, at all
three temperatures ¥, increased with velocity as evidenced by their least-squares
regression equations: at 15 °C, ¥, +018+5-25V; at 25 °C, V,, = 038 +4:50V; at
35 °C, ¥,, = 067+ 5:16V. The slopes of the three lines were not significantly
different from one another. However, their YV intercept values were significantl
different; the highest test temperatures had higher Y intercepts. In addition, tl“
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Fig. 3. Effects of temperature on O, consumption of running cockroaches. Vertical bars
represent 95 % confidence intervals.
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Fig. 4. Effects of incline running on O, consumption of running cockroaches.

resting 7}, values showed the typical poikilothermic response; ¥, was a direct
function of temperature. The resting rates +s.D. in ml O,/g.h were as follows: at
15 °C, 009 + 0'04; at 25 °C, o'17 £ 0-06; at 35 °C, 0'37 + 0-06. The Q,, effect was
approximately 2 across this temperature range.

Cockroaches running on inclines did not show any differences compared to loco-
motion across a level surface (Fig. 4).
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DISCUSSION
Oxygen consumption in response to running

The running response of cockroaches seems remarkably similar to that of higher
vertebrates. This is first evident from Figs. 1 and 2. There we note that the ¥, of
roaches rapidly attained a steady-state level once running began. The cockroach ¢,
on-response of about 1 min compares favourably with humans (Cerretelli et al. 1979)
as well as flying locusts (Krogh & Weis-Fogh, 1951). The time lag from the onset of
exercise until a steady-state ¥, is attained, referred to as an O, deficit (Stainsby &
Barclay, 1970), may depend upon several factors. It depends upon the O, consump-
tion, the efficiency of the O, conductance system, the extent of the tissue and blood
supplies of O,, the time to deplete the ATP and phosphagen supply of muscle, the
magnitude of anaerobiosis, and the way that V,, is linked to ATP hydrolysis. In
addition, it depends upon the sensitivity, position and responsiveness of the sensory
reflex systems monitoring tissue gases and acid-base balance. Setting the latter
problem aside, if the O, conductance system is efficient, the anaerobic contributions
small, the stores of Oy, ATP, and phosphogens limited, then we might expect the ¢,
on-response to be brief. This is the case for both higher vertebrates and insects. The
latter have a tracheal system whereby air is delivered directly to the muscle cells
without the participation of a circulatory system. Krogh & Weis-Fogh (1951) and
Weis-Fogh (1964, 1967) have shown that this system is remarkably adept at supplying
O, even during flight which is energetically more demanding per unit time than
pedestrian locomotion. In contrast to this effective and rapid O, conductance system,
we note that the land crab, C. guanhumi, running at modest speeds, showed a slow #,
on-response (2—4 min) as well as a long ¢, recovery (15-20 min) after exercise (Herreid
et al. 1979). This animal appears to have a poorer O, conductance system than the
cockroach. In crabs, O, must be exchanged across an enclosed gill system, into an
open circulation of low carrying capacity before it reaches the muscles. In addition,
the O, storage of the crab, although unknown, may be relatively high because 309,
of the body weight is haemolymph. Moreover, muscle phosphagen levels may be high
and anaerobic contributions large in crustaceans (e.g. Beis & Newsholme, 1975;
Phillips et al. 1977). In view of such differences, we should not be surprised at the
differences in ¥, response between the two types of arthropods.

The highest measured ¥, of cockroaches running at the fastest speed (0:12 km/h
was approximately 6 times higher than the resting rate (Fig. 2). This metabolic scope
is similar to values recorded for most vertebrates and the land crab C. guanhumi
(Young et al. 1959; Segrem & Hart, 1967; Wunder, 1970; Pasquis, Lacaisse &
Dejours, 1970; Bennett, 1978; Lechner, 1979; Herreid et al. 1979). Nevertheless, the
peak metabolic scope of these species is considerably inferior to those of flying insects
which often range from 25 to 150 times higher than their resting rates (see Polacek &
Kubista, 1960).

The explanation of these species differences lies in the enormous metabolic capacity
of insect flight muscle. It is by far the most active tissue known (e.g. Weis-Fogh,
1967). When flight muscle is quiescent, insects, regardless of their activity, are
poikilothermic with body temperatures (T;) approximating ambient temperatu
(T,). However, once flight muscles begin to contract during preflight warm-up
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uring flight itself, 7', is regulated at high levels and I, is comparable to a homeo-
“therm (e.g. Heinrich, 1974). Consequently, the difference between the poikilothermic
and homeothermic ¥, rates leads to spectacular metabolic scopes. Running in
cockroaches clearly did not generate enough heat to produce unusual scopes nor was
the T raised in our experiments according to measurements made with implanted
copper—constantan thermocouples. We should note, however, that Bartholomew &
Casey (1977) did find walking tropical beetles, Strategus aloeus and Stenodenetes
molarium, with elevated Tp. Nevertheless, this appeared to be caused by contracting
flight muscle.

Recovery from locomotion

Recovery from locomotion in cockroaches seems similar to the pattern described
for many higher vertebrates. Thus, the magnitude of the O, debt is a direct function
of the intensity of exercise. This is seen if one integrates the area under the recovery
curve or considers the maximum time to achieve full recovery (i.e. resting ¥, ). This
pattern is consistent in animals as different as humans and crabs (Hagberg et al. 1980;
Herreid et al. 1979). It is less evident when one examines the slight differences in #;
off-response varying between 4 and 6 min.

The briefness of the #; off values for cockroaches indicates that much of the O,
recovery is comparatively rapid. Although the ¢, off-response does not seem as rapid
as in humans or dogs, which have values well under 1 min (e.g. Piiper & Spiller, 1970;
Cerretelli et al. 1979; Hagberg et al. 1980), nor as long as the 20 min seen in that data
for kangaroo rats or crabs (Yousef et al. 1970; Herreid et al. 1979), it does seem defin-
itely comparable to rats and lizards (Brooks et al. 19715; Moberly, 1968; Dmi’el &
Rappeport, 1976; Gleeson, 1980). Regardless of the variations in ¢; values among
animals, almost all experiments reported within the literature indicate that V),
recovery lasts for periods up to an hour in length. This is certainly true of the cock-
roach data, as well as in the locust following flight (Krogh & Weis-Fogh, 1951). This
is not the case for Drosophila, which had an almost immediate recovery (within 1 or 2
min) after flight (Chadwick & Gilmour, 1940).

The cause for such differences in O, recovery pattern is subject to considerable
debate. Within the literature on vertebrates, where the subject has received extensive
discussion, the recovery O, (‘O, debt’) has been traditionally divided into two parts.
A fast component exists lasting 20—30 s, which is presumably due to replacement of
O, within tissues and body fluids (including O, depleted from respiratory pigments
during locomotion), and the additional O, required to replenish ATP and phospha-
gens such as creatine phosphate or arginine phosphate in the case of most inverte-
brates. The slow component, lasting for periods over 1 h, has been traditionally
assumed to be due to the O, required to convert lactic acid into glycogen. This view
seems no longer tenable for higher vertebrates at least (Brooks et al. 19714, b, 1973;
Segal & Brooks, 1979; Hagberg et al. 1980). Much of the lactic acid generated during
strenuous exercise is not resynthesized into glycogen but directly oxidized after
exercise. Also it has become clear that as much as 709, of the recovery O, is not
directly due to the metabolic demands of locomotion. Rather, body temperatures are

.evated by locomotion and these persist long after the exercise bout causing ¥, to
e increased by a Q,, effect. Additionally, high T reduces the phosphorylative



198 C. F. Herremp, R. J. FuLL anDp D. A. PRAWEL

efficiency (AD®:O ratio), requiring that much more O, be consumed for a give'
amount of ATP produced than at rest.

In view of the turmoil in the literature and our general ignorance about invertebrate
metabolic mechanisms, we are dubious about the cause of ‘O, debt’. Certainly, lactic
acid is generated in cockroaches such as Periplaneta orientalis and other arthropods
both in hypoxia and exercise (Davis & Slater, 1928; Sacktor, 1974; Phillips et al. 1977).
But no direct tie-in with O, debt is evident. Moreover, lactate is not the only end
product of anaerobic metabolism thus making the relationship woth O, debt even
more speculative.

V5, versus velocity

Another point of similarity between vertebrate and cockroach performance is
evident in Fig. 2; the rate of ¥, increases linearily with the velocity of locomotion.
This pattern is common in most pedestrian locomotion (Segrem & Hart, 1967;
Yousef et al. 1970; Taylor et al. 1970; Taylor, 1977) but there are important excep-
tions such as walking humans that show a curvilinear response (e.g. Margaria et al.
1963) and kangaroos that show no increase or even a decrease with the velocity of
locomotion (Dawson & Taylor, 1973; Taylor, 1977). The possible reasons for these
patterns are discussed by Taylor, 1977 and Cavagna, Heglund & Taylor, 1977.

When the line representing ¥, v. velocity of locomotion in cockroaches is extra-
polated to zero velocity, we note that the predicted ¥, at rest is 2-4 times higher than
the actual resting rate (Fig. 2). This result is not unexpected for it is common among
vertebrates (‘Taylor et al. 1970; Taylor, 1977), although there are notable exceptions
including lions, dogs and elk calves (Chassin et al. 1976; Raab, Eng & Waschler, 1976;
Cohen, Robbins & Davitt, 1978). The reason for the discrepancy between the
Y-intercept and the resting rate has received little attention. Among the numerous
possibilities, we can mention the following several: Schmidt-Nielsen (1972) proposed
that there is an undefined postural cost of locomotion which elevates the ¥;,,. There
is little evidence for this concept. More likely, the work of Margaria et al. 1963 on
human walking and Hoyt & Taylor (1979) on pony locomotion suggests that when
careful measurements of slow locomotion are made, the ¥, v. velocity curve is not
linear. Very slow speeds are relatively expensive to maintain, thus deflecting the
Y-intercept value upward. This elevation may occur because of the relative inefficiency
of moving at slow speeds, the irregular walking patterns produced by some animals,
the ‘excitement factor’ generated by running (e.g. heart rate, Baudinette, 1978) or
because of the increased T, and decreased P/O ratio generated during exercise
{Brooks et al. 19714, b). Other possibilities exist and the problem awaits clarification.

Effect of temperature on locomotion

Temperature had a decided effect upon the energetics of cockroach locomotion. At
higher temperatures the cost of locomotion as expressed by ¥, in ml O,/g.h at a
given velocity was elevated. However, the regression lines of Fig. 3, differ only by
their Y-intercept values. Since the slopes of the lines are similar at 15, 25 and 35 °C,
there probably was no change in efficiency with temperature. The increased cost of
locomotion at higher temperatures is simply a function of the Q,, effect. High‘
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rmperatures affected both resting and exercise ¥, values to a comparable degree;
a 10° rise in temperature doubled both rates. These results resemble the data for the
common iguana, Iguana iguana, during treadmill studies (Moberly, 1968). Experi-
ments with the lizard, Uromastix aegyptius across a temperature range of 35-42 °C
showed a more complex picture. Ty did not affect resting ¥,,.. Both slope and Y
intercept values were equivalent at all T ;; nevertheless, in this lizard there were some
interesting gait changes at high velocities that were correlated with temperature
(Dmt’el & Rappeport, 1976).

Incline running

Cockroaches do not seem to use significant amounts of energy to run up or down
inclines compared to a level surface (Fig. 4). Again, these data are consistent with
information from vertebrate experiments. Taylor et al. (1972) found that mammals
as small as mice showed no significant increase in V},, with incline running. They
reasoned that the cost of lifting a given weight a specific distance remains constant
9-8 joules for 1 kg per vertical metre) regardless of the size of the animal. But since

the total metabolic rate per gram and the cost of transport varied inversely with body
size, the relative cost to raise a weight would be harder to detect in small animals.

Using data from mice and chimpanzees Taylor, Caldwell & Rowntree (1972) found
that both expended 14-8 J/kg running up an 15° incline for an efficiency of about
60 %, If we assume roaches are similar, we can calculate that running uphill should
produce a shift in the slope of ¥;,, v. velocity curve from 4:92 for level running to
s-12 for a 15° positive incline. This amounts to a minor 4%, rise in V. It is no
surprise that such a change was not detected with our experimental procedure.

Cost of transport

The minimum cost of transport (M,,,) is the minimum V), (or its energetic
equivalent) used to move 1 g of an animal over a distance of 1 km (Taylor et al. 1970).
Use of this value has permitted investigators to compare animals of radically different
size, running velocities, and standard metabolic rates. As Taylor et al. (1970) have
pointed out, large animals can approach a true M, : the cost of transport is high at
low speeds, but as the rate of locomotion increases the cost decreases until a minimum
value is reached. Small mammals such as mice and rats never approach the necessary
velocities to reach a true M_,,. This is the case for cockroaches as well. The lowest
realized cost of locomotion of the cockroach was 8-2 ml O,/g.km. This is 1-7 times
higher than the theoretical minimum cost of transport of 4-9g ml O,/g.km determined
from the slope of the ¥}, v. velocity line. In fact, the M,,, value would be achieved
only at velocities over o-5 km/h or four times the actual maximum speed of the
roaches.

In spite of the hypothetical nature of M, it still has heuristic value to compare
locomotion among animals. Fig. 5 (upper line) shows the regression line representing
M., for mammals of different body weight (W) determined by Taylor et al. (1970).
The empirical equation developed for the relationship was M,,, = 8:46W/-040,
Small mammals have a higher M, than large; the physical and physiological para-

ters producing this relationship have been recently discussed by Taylor et al.

80). When the minimum cost of transport data for cockroaches (M,,, = 4-92 ml
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Cost of locomotion

10! |-
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- White mouse
g o
-~ Kangaroo rat
=2 Lizards e Land crab
o White rat
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Fig. 5. Minimum cost of transport in ml O,/g.km for animals of different body mass. The
upper line represents data calculated for mammals by Taylor et al. (1970). The lower line
represents data for birds and mammals summarized by Fedak & Seeherman (1979). The data
for the cockroach are from this paper at 24 °C, the data for the land crab are from Herreid
et al. (1979), and values for reptiles are from Taylor (1973).

0O,/g.km) is plotted in Fig. s, it clearly falls close to the predicted value of 4-37 based
on the Taylor et al. (1970) data. Also, the net cost of transport data for the land crab,
Cardisoma guanhumi, lie nearby, as does the value for ants (Herreid et al. 1979;
Jensen & Holm-Jensen, 1980).

Recently, Fedak & Seeherman (1979) have reexamined the data for a large variety
of terrestrial vertebrates including birds and mammals. They concluded that bipedal
and quadrupedal M., values were not significantly different from one another and
generated an equation for the pooled data on 69 species, M, = 3-89W-0-28 shown
as the lower line in Fig. 5. When we use this equation to predict a value for a 5.2 g
animal, the average size of our cockroach, we obtain a value 2-45 or about } the actual
value. Nevertheless, the cockroach data still fall within a reasonable range of the
Fedak & Seeherman (1979) line; in fact, these authors state ‘for any given size
animal, energy cost may vary by a factor of nearly 2’. Thus, it is gratifying to see that
eight-legged crabs and six-legged cockroaches and ants fit the pattern for vertebrate
quadrupeds and bipeds. This suggests that the minimum cost of locomotion is neither
a function of the number of appendages nor the nature of the circulatory or respiratory
system. Within broad limits, we clearly see the principle that the minimum cost of
transport increases as the size of the animal decreases. This generalization extends
across animals ranging from 1oo kg horses to 10 mg ants, spanning more than seven
decades on the body mass scale and includes two phyla separated by more than
o5 billion years of evolution.

This work was supported by grant PCM79-028go from the National Science
Foundation.
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