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SUMMARY

The thermal status of an animal is the result of a combination of physical
and physiological factors. In poikilotherms, it may be possible to separate
these more easily than in homeotherms, where the presence of control
mechanisms can mask the processes occurring. The thermal time constant of
a poikilotherm has been shown to be a useful measure of its thermal
behaviour, and to vary with the physiological status of the animal. A simple
model is developed to show how the thermal time constant is related to the
physics of heat exchange. The derived thermal time constant is shown to
scale as body mass raised to the power 2/3, and this is compared with
results on lizards heating and cooling in water, taken from the literature.

When heat exchange 1n air is considered, the concept of boundary layer
resistance leads to a useful simplification. The thermal time constants in air
taken from the literature show that the boundary layer resistance is
approximately constant.

I. INTRODUCTION

Although poikilotherms are normally considered incapable of maintaining a
constant body temperature, it is now recognized that reptiles can and do regulate
their physiology and behaviour to optimize body temperature (see reviews by
Templeton, 1970; Cloudsey-Thompson, 1971; and White, 1973). Physiological
control enables the animal to vary the rate at which it heats or cools in a fluctuating
environment, probably by varying the blood supply to the periphery (Morgareidge
& White, 1969; Grigg & Alchin, 1976). The study of this control requires that it be
quantified in such a way that the index produced is easily related both to the physics
of heat exchange and to the biology of the animal. Spotila et al. (1973) have proposed
the use of the ‘thermal time constant’, and this is now used by most experimenters
(Smith, 1976; Grigg, Drane & Courtice, 1979; Boland & Bell, 1980; Bartholomew,
1966). This concept has proved to be very useful, facilitating comparisons between
experiments and between species.

Models of the thermal behaviour of lizards have been proposed which relate the
thermal time constant to the physics of heat exchange (Spotila et al. 1973; Grigg et al.
1979). These models are rather complex and this can obscure the important principles
which underlie thermo-regulation. This note presents a simple model based on the
physics of heat conduction in solids, which still allows the derivation of a thermal
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Fig. 1. Log-log plots of thermal time constant against mass for various lizards heating and
cooling in water. The data have been taken from the literature, and in many cases have been
calculated from the rates measured at the midpoint of the heating or cooling curve.

time constant that has a scaling law very similar to that observed for lizards. The
mathematical details of this model will be presented elsewhere.

2. THE MODEL
The simplest possible thermal model for an animal which cannot use metabolic
heat to control its temperature consists of an isothermal core surrounded by a
uniform, thin insulating layer of negligible heat capacity. The rate of change of core
temperature may then be regulated by changing the conductance of the insulating
layer. If the environment is assumed to be isothermal with infinite heat capacity, the
amount of heat transferred from the surroundings per unit time is given by,

a0 _
— =hA(T, = T0), (1)
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The species involved are: V7, Crocodylus johnstoni (Grigg & Alchin, 1976); @, Alligator
mississippiensis (Smith, 1976); O, Physignathus lesueurii (Grigg et al. 1979); O, Crocodylus porosus
(Boland & Bell, 1980); A, Amblyrhynchus cristatus (Bartholomew, 1966; Bartholomew &
Lasiewski, 1965). The lines are the least squares regression lines of log time constant on log
mass. The uncertainties given are the 95 % confidence limits. The theoretical value of this slope
is 0°67.

where 4 is the thermal conductance of the insulating layer, T, is the ambient tempera-
ture, T, is the temperature of the core and A4 is the surface area of the body. The
temperature of the core will change by 1/C dQ/dt per unit time, where C is the heat
capacity of the body. We can then write this as a differential equation,

dT,
dt

which can be solved for any particular set of initial conditions. The solution will
have a term of the form f(T,). exp(—t/7), where 7 is equal to C/hA. This is then
the thermal time constant in this simple model.

This model is basically a simplification of those of Spotila et al. (1973) and Grigg
et al. (1979). It is equivalent to a single layer of insulating fat with no heat storage in
the former, and letting the heat capacity of the insulating layer go to zero in the
latter paper.

SLTC A O} (2)
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To show how the thermal time constant scales with body size, we make the further
assumption that the series of animals is allotropic. Then, for any given shape, the
volume scales as the linear dimension (d) cubed, while surface area scales as d%
The thickness of the insulating layer will scale as the linear dimension, implying that
the thermal conductance A will scale inversely with 4. Now the heat capacity C will
be proportional to the mass for a homogeneous body, and this in turn is proportional
to the volume:

C o Vo ds.
The thermal time constant is given by:

C a3

e e & _ g
=d < g =4

r
Thus the thermal time constant should scale as d2, and so be proportional to mass to
the power 2/3, if this simple geometrical model is valid.

3. RESULTS

This prediction can be tested by comparing thermal time constants measured for
lizards heating and cooling in water, a close approximation to an isothermal environ-
ment. Fig. 1 shows published values of 7 plotted on a log-log scale against the
corresponding body mass for lizards between 150g and 30 kg. The differences
between heating and cooling time constants are quite marked. The slope of the
regression line fitted to the data for cooling agrees well with the prediction, but that
for heating is significantly different at the 959%, level.

It thus appears that this simple model can account for the increase in the thermal
inertia of lizards with increasing mass, but that in order to get full quantitative
agreement, a greater understanding of the physiology and a correspondingly more

complex model may be needed.
The literature also contains many values for the time constant for heating and

cooling in air. In this case, the boundary layer of air adjacent to the animal provides
an additional insulating layer. Analysis is facilitated by using the concept of ‘resistance’
advocated by Clark, Cena & Monteith (1973). They define the resistance to heat
flow as:

pCﬂA (Ta - Tc)’
r=" dQ/dt (3)

where p and C,, are the density and specific heat of air, and A4 is the area. Defined in
this way, 7 has dimensions of time divided by length (e.g. s m~1), and can easily be
compared with other heat or mass transfer resistances.

We can now think of the insulating layers as two resistors in series, those of the
body and the boundary layer. If we call these resistances 7z and r, respectively, then
the total resistance ry = r,+r5. Comparing eqn (1) with eqn (3), it is seen that the
thermal conductance is inversely proportional to 7y,



Difference in time constants (min)

Difference in time constants (min)
=
T
.
[
>

Scaling of thermal inertia of lizards

50t (a) Heating

204 e

slope 0:32 £ 0-06

001 002 0-05 01 02 05 1:0 20 50 10:0
Mass (kg)

100

w
[=]
T

(b) Cooling o /.

(]
(=)
\J

—
o
L4

slope 0-38 + 0-05

W
T

1 . N
0-01 0-02 0-05 0-1 0-2 05 1-0 20 50 100
Mass (kg)

Fig. 2. Log—log plots of the component of the thermal time constant in air due to the boundary
layer, against mass for both heating and cooling. This component has been calculated by
subtracting the time constant in water derived from the regression equations found previously
from the value of the time constant in air in the literature. This difference was then normalized
to an air velocity of 3 ms~! using a correction proportional to the square root of the air
velocity in the particular experiment (Monteith, 1973). Only experiments where the air
velocity was greater than 15 m s~ have been used. The species are: @, Alligator mississippiensis
(Smith, 1976); W, Varanus spp. (Bartholomew & Tucker, 1964); W, Disposaurus dorsalis
(Weathers, 1970); A, Amphibolurus barbatus (Bartholomew & Tucker, 1963); , Tiliqua
scincoides (Bartholomew et al. 1965). The regression lines shown do not differ significantly
from lines of slope 033, indicating that heat loss in air is proportional to the area to volume
ratio, and that the boundary laver resistance is constant.
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where K is a proportionality constant involving only the arbitrarily selected parameters
of the density and specific heat of air. The thermal time constant is given by,

_C _GCrg &
TS A~ K4 T pE

or
T d: drH = d(fB-i-TB).

If we ignore the boundary layer for a moment, we can see that the first term is just
the thermal time constant in water and so can be removed by subtracting the fitted
time constants for heating and cooling in water. We are then left with the contribution
due to the boundary layer which should scale as dr,, or as M7,

Fig. 2 shows that r, appears to be constant, and approximately the same for
heating and cooling. As r, is proportional to the Nusselt number, it could be expected
to vary with the linear dimension of the animal, and so vary with mass (Monteith,
1973). However, at the high air velocities used in these experiments (typically
2-3 m s~1), the boundary layer will have a thickness of only a fraction of a millimetre,
probably of the same order as the surface roughness of the skin. In this case the
overall dimension of the animal will be unimportant, and the surface roughness will
maintain r, above that predicted for a smooth surface.

4. DISCUSSION

For smaller lizards heating and cooling in air, the boundary layer resistance is
much larger than that of the insulating layer. As mass increases, the former becomes
less important, and the resistances become equal at a mass of about 7 kg for heating
and 4 kg for cooling. For masses much larger than these, the boundary layer
resistance can be ignored, and lizards will heat and cool equally in air or water.

The largest animals appearing in these results are small crocodiles of around 20 kg
mass. These had time constants for cooling of about 2 h, thus allowing considerable
freedom of movement in adverse environments before basking would be necessary.
If we extrapolate the results presented here, we can predict that a large crocodile of
mass 400 kg will have a thermal time constant for cooling of about 12 h. It will
therefore have a high degree of thermal stability, its body temperature varying by
only a few kelvins between night and day. If we extrapolate even further, it can be
seen that larger lizards such as dinosaurs would have even greater thermal stability.
For instance, a 2000 kg lizard is predicted to have a thermal time constant of almost
48 h. As has been pointed out by Spotila et al. (1973) and others, such a massive
creature would feel little effect of the diurnal cycle in ambient temperature, and be
able to remain quite active during cool periods for some time.

I wish to thank Gordon Grigg for a preprint and Jerry Clark for his helpful
comments.
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