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SUMMARY

Weis-Fogh and Norberg concluded that steady-state aerodynamics is
incapable of explaining how the dragonfly supports its weight during
hovering. Norberg also concluded that the wing kinematics of Aeschnajuncea
L., as determined photographically, are incompatible with those proposed
by Weis-Fogh for his Flip mechanism. The present paper has proposed
an alternative lift-generating mechanism, various aspects of which are
novel from the standpoint of animal flight. Flow visualization tests performed
in water established the flow field during a complete cycle of the idealized
wing motion. Using this information and unsteady inviscid flow theory
the forces were analysed. A plausible balance of horizontal forces and more
than sufficient lift were obtained. A physical explanation of the theory is
provided for those who do not wish to study the mathematical details.

I. INTRODUCTION

In an extensive review of sustained hovering flight of animals, Weis-Fogh (1973)
noted that whereas in many cases the forces necessary to support the animal's weight
could be explained in terms of the classical lift-generation mechanism of Kutta,
Zhukovskii and Prandtl (Weis-Fogh termed this 'normal hovering'), there are other
examples, such as bats, butterflies, dragonflies, hover-flies and chalcid wasps, where
the required lifts are too large to be developed by the classical mechanism familiar
to aerodynamicists.

In an attempt to resolve these anomalies Weis-Fogh (1973) proposed two novel
mechanisms of lift generation. The first, termed the 'clap and fling', is relevant to
the hovering flight of fruit-flies and chalcid wasps and at least the take-off of butter-
flies, pigeons and other animals that bring their wings together on the upstroke. The
'clap and fling' mechanism was supported by the analysis of Lighthill (1973), and
can operate even for the case of an inviscid fluid. In addition it does not suffer the
delay in the build-up of lift associated with the Wagner effect present in the classical
fttuation.

Weis-Fogh (1973) proposed a second, much more conjectural mechanism, termed
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the 'flip', to explain the anomalous lift of animals such as dragonflies and hoverflie^
that hover with their bodies horizontal. The idea is that a rapid pronation of the
stiff anterior portion of the wing about a spanwise axis leads to the formation of a
leading edge bound vortex as well as a vortex of opposite sense at the comparatively
flexible posterior part of the wing. The pronation starts at the base of the wing and
propagates outwards such that the leading edge near the root would have completed
its twist before the tip had started to move. Weis-Fogh felt that this spanwise delay
of the twist would preserve the vorticity at the leading edge by minimizing the tip-
loss effect. To produce net positive lift and no net thrust, Weis-Fogh required the
wing tip to trace out an approximately rhomboidal path, with lift generated by the
'flip' mechanism along the upper and lower (nearly horizontal) paths and normal
lift during the oblique up- and downstrokes. Weis-Fogh (1973) implied that hovering
could not be sustained by the 'flip' mechanism if the wings beat up and down in a
single plane.

Norberg (1975) filmed the hovering flight of dragonfly Aeschna juncea in the field
and found that each wing beats in a single-stroke plane inclined at 6o° to the hori-
zontal. In view of this the 'flip' mechanism is of doubtful relevance to the flight of
the dragonfly. On the basis of the observed wing kinematics, Norberg (1975) calculated
average minimum force coefficients using steady-state aerodynamics. At most only
40% of the upward force required during hovering can be explained in this way.

In the present paper some alternative lift mechanisms are proposed for the hovering
flight of dragonflies. To obtain some idea of their plausibility, rough estimates are
made of the forces developed during various phases of the flapping motion. The
estimates are based upon mid-span wing kinematics indicated by Norberg's (1975)
films. Each wing-pair is considered separately and mutual aerodynamic interference
between them is neglected. The insect wings are idealized as rigid, two-dimensional,
thin plates. Flow visualization experiments were performed in essentially still water
with a thin plate moved to simulate the idealized wing stroke at mid-span at the
appropriate Reynolds numbers, the main purpose being to identify the strengths and
positions of the various vortices generated during the motion. The observed flow
patterns were then modelled using unsteady potential flow theory. Using the potential
flow representations the forces developed at various stages of the stroke and the
net lift and thrust averaged over one complete cycle are estimated.

2. KINEMATICS OF THE WING MOTION DURING HOVERING,
AND ITS IDEALIZATION

A reasonably complete description of the wing kinematics during hovering of the
dragonfly Aeschna juncea may be obtained from the cine' films and still photographs
taken by Norberg (1975). The exposure frequency of Norberg's cine-camera was
80 frames s- 1 whereas the average wing-beat frequency of Aeschna juncea during
hovering is about 36 Hz; thus to get sufficiently detailed information over one wing-
beat cycle it was necessary to patch together information from frames taken during
a large number of wing beats assuming an average wing-beat frequency.

Information so obtained is subject to uncertainties due to the possibility of gusts
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Fig. i. Tracings from a film of Aetckiia juncca L. in free hovering flight. Axis of camera lens
normal to the wing-stroke plane to within about 50. The wing-beat frequency is 37 Hz. The
forewings are shaded. The pictures are ordered according to phase and selected from several
wing strokes (fig. 4 of Norberg, 1975).

or changes in the insect's flapping frequency; but if the data do collapse onto a
single curve there is reason to place confidence in it. Fig. 1 is taken from Norberg
(1975) and represents tracings from a head-on film of a hovering Aeschna jxtncea
(pictures were selected from several wing beats). From these tracings and from
cinê  films taken from the side as well as still photographs, Norberg (1975) obtained
the following picture of the wing kinematics. Each wing tip moves up and down in
a single plane inclined at 6o° to the horizontal, and does not trace out the rhomboidal

s envisaged by Weis-Fogh (1973). When viewed from the front in Fig. 1 the
rewing-pair is seen to beat from 350 above the horizontal to 250 below, whereas

the hindwing-pair beats from 450 above to 150 below, i.e. through total angles of

3 EXB 83
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Fig. 2. Typical wing jection just inboard of the nodus of the forewing
of an Aetchna dragonfly.

Pronation

Downstroke

Supinalion

Fig. 3. Schematic diagram of the idealized path of the mid chord of Aetckna juncea L.
The triangle indicates the upper side of the leading edge of the wing.

60° in both cases. Other sequences showed variations from these values, so they can
only be taken as roughly representative. During the downstroke the chord-line is
close to horizontal while during the upstroke the chord-line is approximately vertical.

At the bottom of the downstroke the wing i9 rapidly supinated and twisted. After
superimposing several of the tracings from Fig. 1 of each set of wings (forewings
and hindwings) near the bottom of their stroke, it was concluded that the supination
takes place about a nearly stationary leading edge.

The kinematics of the pronation that takes place at the top of the stroke is not so
well documented and is also less clear, because the rear portion of the wing (par-
ticularly the hindwing near the root) is much more flexible when loads are applied
to the convex side (see Fig. 2, which shows a typical wing section presented by
Newman, Savage & Schouela (1977)). Superimposing tracings near the top of the
wing stroke suggests that the forewing rotates about the leading edge whereas the
hindwing may rotate about a spanwise axis close to the mid-chord line.

A schematic diagram of the complete wing stroke consisting of the downstroke,
the supination, the upstroke and finally the pronation at the top of the upstroke is
shown in Fig. 3.

From Norberg's (1975) cine"-nlm data giving the wing-tip position at specified
time intervals, and knowing the wing beat frequency, it is possible to generate a curve
for wing-tip position as a function of time. The resulting curve for the left and
forewings is shown in Fig. 4. After the pronation at the top of the stroke the
downstroke is seen to consist of two phases, a rapid initial motion (which we term
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Time (fraction of period)

Fig. 4. Variation of wing-tip position with time as interpreted from data of Norberg (1975).
The separate phases used in the nnalysis are indicated, (a) Scull, (b) pause, (c) supination,
(d) upstroke, (<•) pronation. O, left forewing; • right forewing.

the scull) followed by a slower phase (pause). Following supination at the bottom, the
upstroke takes place at nearly constant speed. Norberg (1977, private communication)
has kindly supplied the authors with additional data on wing tip position obtained
from his cine" film. These data for the left forewing, with the exception of a seemingly
inconsistent set from four consecutive frames, substantiate the wing-tip motions
indicated in Fig. 4. The relative time taken for each phase of the wing stroke is not
absolutely certain, but for the analyses of the present paper the curve shown in
Fig. 4 will be assumed.

For the subsequent estimates of the various forces developed during hovering, the
kinematics of the mid-span has been idealized (on the basis of Fig. 4) to consist of
piecewise uniform velocity segments for the scull, pause and upstroke phases con-
nected by rotations at the top and bottom of the stroke corresponding respectively
to pronation and supination. An average (of both fore and hindwing) chord (2a) of
1-3 cm, an average half-span of 5 cm, an amplitude of the stroke at mid-span of
2-5 cm (corresponding to a 60° flap) and a wing-stroke frequency of 36 Hz were
assumed. Details of the idealized wing kinematics for the translation phases including
the translation speeds, V, and corresponding Reynolds numbers, Re, are given in
Table 1.

Some idea of the periods taken for the supination and pronation phases was obtained
follows. Assuming that the wing comes to a halt on the downstroke prior to the
pination about the leading edge and that the wing tip is approximately on the

mid-chord line, then the wing tip moves downward about half a wing chord or about

3-3
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Table i. Idealized uring kinematics for translation phases

Phase

Scull
Pause
Upstroke

Fraction of
wing stroke
amplitude

0-63
015
i-oo

Fraction of
wing stroke

period

0 1 4
039
028

Translation
speed of wing
at mid-span, V

(cm/s)

405
35

331

Reynolds no.
Re = zVa/v

8100
700

6420

Translation
speed of water

table model
(cm/sec)

27
023
2-1

The kinematic viscosities, v, of air and water were taken as 13 x io~* and icr* m'/s respectively for
determination of the Reynolds number.

Table 2. Idealized wing kinematics for rotation phases

Phase

Supination
Pronation

Fraction
of wing stroke

period

O'lO
0-09

Total angle
of rotation

(rad)

n/z
ff/2

Mean rate
of rotation for

insect, u>
(rad/sec)

56S
628

Rotation
Reynolds no.:
Re = 4<uaV

735°
8160

Mean rate
of rotation for

water
table model

(rad/sec)

0-33
036

13% of the wing-tip amplitude. From Fig. 4 it is estimated that the time taken for
the supination is about 10% of the total wing-stroke period. The pronation at the
top of the stroke takes place in the remaining 9% of the wing-stroke period. Table 2
lists the details of the idealized kinematics of the rotation phases including average
rotation rate, (0, and rotation Reynolds numbers.

3. TWO-DIMENSIONAL FLOW VISUALIZATION APPARATUS

AND TEST PROCEDURE

The complicated dragonfly wing motions generate a very complex flow field. Since
it was intended to calculate the forces generated during hovering on the basis of
inviscid flow theory, flow visualization was used to guide the theoretical modelling
of the fluid motion. In particular it was necessary to determine the locations and
strengths of the various vortices generated during the wing stroke so that they could
be modelled by appropriate potential flow vortices in the theoretical analysis. In
addition, information as to whether or not the Kutta condition was satisfied at
various phases of the motion was required.

Flow visualization tests were performed by moving a flat plate (representing the
wing) in still water in such a way as to match the appropriate Reynolds numbers
of Aeschna juncea for each phase of the wing flapping motion (see Tables 1 and 2).
Since the wing operates at very large angles of attack for the translation phases of
the motion it did not seem important to accurately reproduce the aerofoil section;
for this reason a flat plate was regarded as satisfactory for modelling the overall
flow patterns. The flat plate (fabricated from -fa in. aluminum sheet) was mounted
vertically on a carriage so that it could be translated and rotated by two variable-speed
electric motors (Fig. 5). The flat plate was moved in a manner similar to that of
idealized mid-span section of the dragonfly wing.
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Variable-speed
d.c. motors

-Counter-weight
Fig. 5. Experimental arrangement for flow visualization tests.

Due to the large chord (15 cm) of the model and the smaller kinematic viscosity
of water compared with air, the translational and rotational speeds of the model at
the appropriate Reynolds numbers were considerably less than those of the dragonfly
(see Tables 1 and 2).

It was awkward to determine the flow pattern after many complete cycles. There-
fore it was first established that the flow pattern was essentially unchanged if each
phase was preceded by at least the previous phase started from rest.

The flow was indicated by using surface markers. Several were tried: confetti
comprising the residue from computer card punching operations proved to be the
most successful. Time exposures were taken during the simulated flapping motions
with a still camera fixed in the laboratory reference frame. Thus both the streamline
patterns and magnitudes of the velocities could be determined from the direction
and length of the streaks produced on the film by individual markers during a known
time exposure (typically -J s).

The results obtained from these flow-visualization experiments are described in
the next section as they pertain to the analysis of each phase of the flapping motion.
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4. FORCES ON A TWO-DIMENSIONAL TRANSLATING AND ROTATING
PLATE WHICH SIMULATES THE WING MOTION

The purpose of this section is to theoretically model each phase of the wing beat
as if the wing were two-dimensional using a chord of 1 -3 cm (mean of fore and
hind wing), and a flapping speed corresponding to the wing semi-span. In view of
the atypical variation of chord with spanwise position when compared with, for
example, a propeller, and also the preliminary nature of the calculations, a more
refined choice of representative spanwise position did not seem to be appropriate.
Two-dimensional, unsteady, inviscid flow theory is used and vortices are placed in
the flow at positions and with strengths suggested by the flow visualization experiments.

4.1. Flow visualization and a physical explanation of the dominant
forces that are generated

Typical results from the flow visualization tests are shown in Figs. 6-8.
A sequence of pictures showing the end rotations and downstroke is shown in

Fig. 6. Fig. 6 (a) and (4) show pronation that is taken to be about the leading edge,
Fig. 6(c)-(/) shows the high-speed scull, Fig. 6(g)-(k) the pause and finally 6(/)-(n)
the supination. It should be noted that the plate was moved perpendicular to the
supporting cross-bar, which can be seen in the pictures, and the rotations were
therefore begun and ended at the appropriate angle to simulate the downstroke of
a horizontal wing in a stroke plane making 60° with the vertical. The pictures were
taken using a \ s exposure time and the surface markers clearly show the vortices
that are produced by the motion.

Fig. 7 was taken with the same time exposure and started from rest with supi-
nation (a)-(c), followed by the upstroke (d)-(j) and pronation (k)-{l) again about
the leading edge. A comparison of Fig. 6(n) and y(c) shows that the flow at the
end of supination is not greatly affected by the previous motion which lends credence
to the procedures which have been adopted. Fig. 8 was taken to show more clearly
the flow about a rotating plate starting from rest. In this case a i s time exposure
was used. Fig. 8 (a) shows the motion at the start, (b) after a rotation of 450 and (c)
after 900.

In the following section these tests are used as a guide in developing theoretical
analyses for the contributions to the overall force associated with each phase of the
wings' motion. The force components of interest are the vertical component or lift,
and the horizontal component, which is identified as a thrust if in the normal
direction of forward flight, and a drag if in the reverse direction. During hovering
flight the contributions to thrust and drag, of course, cancel.

It may be helpful, before going into the mathematical details in the next section,
to describe briefly in physical terms the main contributions to the overall lift and
thrust. Beginning with the downstroke, a strong leading-edge vortex is generated
during the initial scull and the other vortices, which were produced during the
previous pronation, are left behind as the plate moves downwards (see Fig. 9 (a)).
The scull is so rapid that the contribution to the overall lift and thrust are relative
unimportant. However, during the subsequent pause the strong leading-edge vorte*
dominates the motion and appears to remain nearly stationary with respect to the
plate.
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l'"ig. 6 (a)-(/). For legend see next pnge.

C. B. SAVAGE, B. G. NEWMAN AND D. T.-M. WONG (Facing p. 66)
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(*)
Fig. 6 (jg)—(/)• For legend see facing page.

C. B. SAVAGE, B. G. NEWMAN AND D. T.-M. WONG
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On)

Fig. 6. Flow visualization of the siniulntion in water of the end rotations and downstroke of
a dragonfly wing, (a)-(b) Pronation, (c)—(/) scull, (g)—(k) pause, (/)—{«) supination.

C. B. SAVAGE, B. C. NEWMAN AND D. T.-M. WONG
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Fig. 7 (a)—(/). For legend see next page.

C. B. SAVAGE, B. G. NEWMAN AND D. T.-M. WONG
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Fig. 7. Flow visualization of the simulation in water of the end rotations and upstroke of a
dragonfly wing. (a)-{c) Supination, (d)-(j) upstroke, (&)-{/) pronation.

C. B. SAVAGE, B. C. NEWMAN AND D. T.-M. WONG
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(<•)

Fig. 8. Flow visualization of a rotating plate starting from rest in still water after nn angle
of rotation of (a) < 50, (6) =45° , (c) X 900.

C. B. SAVAGE, B. G. NEWMAND. AND T.-M. WONG
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Flow round the

(a)

Trailing-edge
vortex

Fig. 9. Sketch of flow patterns for interpreting the main contributions to the overall
force balance, (a) Pause phase, (6) supination phase.

The presence of this vortex leads to high velocities and low pressures above the
plate. Thus there is a significant contribution to the overall lift. It may be noted
that, since the wing is operating at a very high angle of attack (6o°), this lift would
normally be associated with the conventional drag of a bluff body. However, here
the associated drag coefficient is a good deal higher because the vortex is stronger
and it is stationary with respect to the plate.

During the subsequent supination at the bottom of the stroke the downward
movement is stopped and the plate is rotated about its leading edge. The flow is
then carried round the leading edge of the plate from the lower to the upper surface
as indicated in Fig. g(b).

Due to the high velocities near the leading edge, suction is generated there, giving
a contribution to thrust at the start of supination and considerable lift at the end.
In addition a strong separation vortex forms over the upper rear of the wing giving
rise to low pressures in this region. Thus there is a further contribution to lift at ,
the start of supination and a contribution to drag at the end. The net contribution
from the supination phase is considerable lift and less drag.

During the subsequent upstroke the vortices formed during supination are left
behind the trailing edge. The wing is at an angle of attack of 300 and lift builds up
in the classical manner by the shedding of trailing edge vortices and the gradual
build up of circulation around the wing itself. Thus overall thrust is developed
together with a smaller amount of lift.

The centre of rotation for the subsequent pronation is somewhere between the
leading edge and mid-chord. If it were the mid-chord no lift or thrust would be
generated for a plate starting from rest. Moreover the highly cambered wing of the
dragonfly is very flexible for this direction of rotation. For both these reasons the
forces generated during this phase of the motion are likely to be relatively unimportant.

To summarize, significant lift is generated during the pause in the downstroke
and during supination, and the thrust generated during supination is approximately
balanced by the overall drag generated during the upstroke. The actual values
calculated for both wings during each phase of the motion are shown in Table 3.

4.2. Detailed analysis of the individual phases of the motion

Theoretical background

The flow about a flat plate extending from O to ia in the z plane is mapped into
the flow about the unit circle centred at the origin in the £ plane by the conformal
transformation
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0 / 2a x

Fig. io. Definition sketch for analysis of translating and rotating plate.

Table 3. Estimated forces on wings of hovering Aeschna juncea L.

Phase

Pronation
Scull
Pause

Supination

Upstroke

Fraction of
wing-stroke

period

0-09
014
0-39

o-io

0-28

Assumptions used in analysis

Forces neglected
Forces neglected
Vortex strengths following

leading edge pronation;
zero circulation •

Kutta condition satisfied
at trailing edge

Classical Wagner calculation

Con-
tributions

Total
force

to lift (gf) thrust (gf)

087

j.30

0-48

- 0 - 2 5

- 0 8 8

082

Forces listed for each phase correspond to the sum of values for fore and hind wing-pairs.

Z = M

According to Milne-Thomson (1968), if the left-hand edge of the plate (Fig. 10)
is moving with a velocity V making angle a with the * axis and at the same time is
rotating with anti-clockwise angular velocity to, the complex potential without
circulation is the sum of the negative powers of £ in the expression

where bars denote the complex conjugate of the function itself, i.e. excluding its
argument.

In this analysis the axes are instantaneously fixed with respect to the body and
flow is at rest at infinity. Thus the complex potential is

-^+-p.Iw iVa •

The addition of counterclockwise circulation of strength 2nK adds iKlnZ, to thl
above expression.
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Fig. 11. Obsen'ed flow patterns during pause phase: (a) after pronation about
the lending edge, (6) after pronation about the mid chord.

C. B. SAVAGE, B. G. NEWMAN AND D. T.-M. WONG {Facing p. 68)
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The addition of a counterclockwise vortex of strength 2nK0 at point z0 in the
z plane adds, using Milne-Thomson's circle theorem,

to the complex potential, where £p is the point in the circle plane corresponding to

*0' . .
The stream function i/r is obtained directly from the complex potential

21^ = W-W (3)

and the complex conjugate velocity

u — iv = —dW/dz in Milne-Thomson's notion. (4)
The force components Fx and Fy on the plate are obtained from the general

unsteady form of Blasius' theorem

Fx- iFv = \ip I / S *dz + DP <£ 2 dW- ip ̂  <J> W dz- znKpiVe-**, (5)

where 2nK is the circulation round the plate.

Dozonstroke — scull and pause phases

Referring to Figs. 6(c)-(k) it is seen that a separation vortex grows near the
leading edge of the plate and the vortices formed earlier during pronation also
remain in the vicinity of the plate. The calculation of the forces generated during
this short phase would therefore be difficult. An estimate of the lift generated can,
however, be obtained from the analysis of Sarpkaya (1975) for the normal force on
a plate started from rest and moving obliquely through stationary fluid. The total
contribution to the lift from both fore and hind wing-pairs amounts to less than
10% of the all-up weight of the insect (075 gf) and this is certainly less than the
accuracy of our estimation for the other phases of the motion. It therefore seems
reasonable to neglect the forces for this phase of the motion.

At the commencement of the pause in the downstroke the pronation vortices
have been left behind and the leading-edge separation vortex dominates the flow
over the side of the plate corresponding to the upper side of the wing: it also appears
to remain nearly stationary with respect to the plate. Figs. 6(g)-(k) illustrate this
part of the motion following pronation about the leading edge. If pronation occurs
about the mid-chord the picture is somewhat changed as can be seen in the comparison
in Fig. 11.

For this phase of the motion it is therefore necessary to calculate the forces on a
non-rotating plate translating obliquely at angle a (= 6o°) with a bound vortex of
strength 2nK0 situated at £, and fixed relative to coordinates moving with the plate.
A question immediately arises: should circulation be added to the plate to ensure

: the Kutta condition is satisfied? If the condition is satisfied the streamlines near
trailing edge (in coordinates fixed relative to the stationary fluid) are continuous

there on either side of the plate as can be seen from the computed streamlines in
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0-2a

-0-2a

0-2a

0-2a
-Q-2a

0-2a

Fig. II. Computed streamlines during pause phase near trailing edge (o, o) in coordinates
fixed relative to the stationary fluid; (a) with Kutta condition satisfied, (6) without the
addition of extra circulation.

Fig. 12(a). If the condition is not satisfied, on the other hand, the flow appears to
travel around the trailing edge as shown in Fig. 12(6). The latter situation seems to
apply in the flow visualization experiments shown in Fig. 11 (a). This may be because
with the Kutta condition satisfied the flow is approaching the plate at the right hand
edge and it is inappropriate to consider this as a trailing edge in this case.

Without circulation the complex potential for the flow about the plate is (equation
2 with (1) = o and addition of an external vortex)

I f . * .

The complex conjugate force (equation (5) with w = o, d/dt = o and K = o)

(6)

Evaluating the integrals by the residue theorem (Churchill, Brown & Verhey (1974))

" '""• (7)
sin a

The average position of the vortex from the pictures after leading edge pronation
is z0 = 1-380 — 1 077a (remember that the plate is moving upwards in the coordinate
system used in the theory, whereas it is moving downwards in the pictures, Fig. (>(g)-
(k)). The corresponding circulation was determined by integrating the velocities
around closed paths outside the viscous core of the vortex. The velocities were

estimated by considering individual particle streak lengths. The circulations from
the flow visualization tests were scaled to the dragonfly situation by matching th
vortex Reynolds numbers, K^/v. On this basis Ko = —300 cma/s; the negative si^
because it is a clockwise vortex.
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+o +2a

Fig. 13. Computed streamlines during supination phase in coordinates fixed relative
to the stationary fluid; zero circulation.

0-2a

-0-2a
0-2a

Fig. 14. Computed streamlines during supination phase in coordinates fixed relative
to stationary fluid; Kutta condition satisfied.

The rotational phases - supination and pronation

During supination the leading edge of the wing is stationary with the wing rotating
about it. Moreover the wing is relatively stiff, being concave forward, for this
direction of rotation. During rotation V = o in equations (2) and (5).

The flow visualization for this phase is shown in Figs. 6(/), (m), and (n) taken at
a rotational Reynolds number (^coaa)/v = 3 x io4. The computed streamlines for

(. rotating plate (Fig. 13) without circulation are in good qualitative agreement with
he flow visualization at the start of the motion (Figs. 6(/) and 8 (a)). As the plate

rotates it is seen that a strong vortex forms on the supper side of the wing near the
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trailing edge and that the Kutta condition is approximately satisfied. A comparison of
photographs 6(m) and 8(b) with the computed trailing-edge streamlines using
sufficient circulation to satisfy the Kutta condition (Fig. 14) substantiates the latter
point. Computations have therefore been made with a small vortex shed near the start
of the motion and with equal and opposite circulation round the wing. The vortex
strength was then adjusted to continually satisfy the Kutta condition during the
subsequent motion. The angular velocity of the plate is zero at the beginning and
end of the 900 motion and is assumed to vary sinusoidally with time /,

w = (oo sin (t/T)n, (8)

where T is the total time of the rotation.
The strength of the vortex and the corresponding equal and opposite circulation

round the plate is continuously adjusted so that the Kutta condition is satisfied at all
times.

The complex conjugate velocity

dW
" £ •

and is finite at the trailing edge z - za, £ = 1 if

The complex conjugate force on the plate is obtained from equation (5) with
V = o. Making frequent use of the residue theorem (Churchill, Brown & Verhey,
1974), the first term on the right-hand side of equation (5),

I r 19. ( I I , 25o(£o£o-

the second term

and the third term

The third term has unsteady terms arising from dw/dt (which is obtained from
equation (8)), d^/dt and dl^/dt. The quantity dt^/dt is directly related to dzjdt,
the rate of change of the position of the vortex relative to the plate. This has two
parts, the first due to the velocity field relative to the plate and the second due to
the reorientation of the axes as they move with the plate.

For the first part, equation (2) with circulation and equation (4) give the complex
conjugate velocity at ^
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Since

it can be shown that

For the second part due to the plate rotating with counterclockwise angular
velocity w

dzjdt = (o(y0-ix0) = -icoz0

Combined with equation (i) at z0, this gives

Equations 12 and 13 are combined to give

where A'o is given by equation (10).
Finally, the conjugate of equation 14 gives d^/dt and thus the force on the plate

may be determined during the subsequent motion as long as the instantaneous
position of the vortex £0 is known. This was obtained by integrating equation (14)
numerically using small time steps of ^ViT °f t n e ^me f°r tr>e complete rotation.
The forces were calculated and also summed in terms of overall lift and thrust. The
starting position of the vortex was assumed to be (2a, —o-oia) at t = o. This choice
was based on the experimental observations of Pierce (1961) of the vortices shed at
the sharp edges of a circular plate accelerated suddenly from rest. Variations in the
y position from — 0-0050 to —0-20 produced a moderate change of lift (about 15%)
but a somewhat larger change of thrust (from 10 to 50%). These inaccuracies are
considered to be acceptable for the present purpose.

Similar calculations have been done for the pronation at the top of the wing stroke.
This is again for rotation about the leading edge. However, from the kinematics
of the actual dragonfly wing it appears that the centre of rotation is closer to mid
chord and for that position the contribution to lift and thrust would be zero. An
additional uncertainty in the calculation of the forces for this phase of the motion
stems from the comparative flexibility of the wing for this direction of rotation. On
two counts therefore it is likely that the forces developed by the dragonfly during
pronation are considerably less than those calculated above.

Upstroke

Figs. 7(c)-{]') shows the flow patterns at the end of supination and during the
upstroke with the 6o° stroke plane vertical. It is seen that a stopping vortex is formed
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at the end of supination and that both it and the supination vortex are left behind
during the subsequent upstroke. Presumably the stopping vortex has added to it
the starting vortex due to the upstroke and it does appear to be somewhat stronger
than the supination vortex. We therefore use the classical Wagner calculation for
the lift on a plate at 300 incidence bearing in mind however that the calculated
forces are overestimates for two reasons:

(i) The flow is probably separated to some extent if not completely.
(ii) The dragonfly wing is comparatively pliant over the posterior position when

the oncoming stream is directed towards the convex side of the wing.
Taking account of the build up of circulation, the force normal to the stroke plane

F = I 1 znapV* sin a, (15)

where r = Vt/a is the number of semi chord lengths travelled. The term in parentheses
is Garrick's (1951) expression for the Wagner function.

Thus if fj is the time of the upstroke the average force normal to the stroke plane

5. DISCUSSION AND RESULTS

The calculated lifts and thrusts for each of the phases of the wing stroke are shown
in Table 3. It is interesting to note that the lower rotational phase (supination)
contributes significantly to the lift as anticipated by Norberg (1975). After summing
over a complete wing cycle it is seen that the overall thrust is approximately zero
but that the total lift is about over four times the weight (0-75 gf) of the insect. Novel
mechanisms for achieving the force balance during hovering flight have been proposed
and the present calculations are an attempt to determine their feasibility. It is
encouraging that the calculated lift is more than adequate. Because of the great
complexity of both the wing kinematics and the flow field, simplifying assumptions
have been made throughout the analysis. Some of these would lead to an over-
estimate of the lift.

An obvious inaccuracy is the two-dimensional representation for the flow generated
by the flapping motion. There are two aspects to be considered - firstly, the three-
dimensional effects associated with the finite dragonfly wing (tip losses), and secondly,
the spanwise variation in the number of chord lengths each section of the wing
moves during the up-and-down motion. While it is difficult to estimate the magnitude
of these three-dimensional effects, the net result would likely be a reduction in
total lift predicted by the two-dimensional analysis. Another inaccuracy is the
neglect of mutual aerodynamic interference between the two wing-pairs. However,
significant parts of the lift are generated near the bottom of the stroke when the
other wing-pair is at the top of the stroke and far away. Thus the interference may
be relatively unimportant.

Although the real (viscous) vortices have been modelled by potential-flow vortices,
the theoretical vortex strengths were chosen to be in accord with the outer inviscid
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regions of the vortices developed in the flow visualization experiments. The neglect
of viscous effects in the core of the vortices thus is expected to have little influence
on the forces developed during the wing stroke since the viscous cores did not
extend as far as the wing surface during the relevant motion.

The calculations for the pronation phase show a large thrust and negative lift
when the wing is pronated about the leading edge. As discussed in Section 2, the
location of the axis of pronation was not clearly evident in Norberg's (1975) tracings.
If the wing were rigid and pronated about the mid-chord, little lift and thrust
would be expected because of the symmetry. In reality the wing is not rigid but
relatively flexible for the direction of rotation associated with the pronation. In this
case it is likely that the leading edge participates in the rotation but the rear portion
of the wing lags behind and is activated after the wing has initiated the downstroke.
Thus most of the wing is passive during the pronation phase and it is likely that
the lift and thrust generated are quite small: the calculated values have not been
shown in Table 3.

Because of the likely passive nature of the rear part of the wing during pronation
and the initial part of the downstroke, the strength of the leading-edge vortex developed
during the scull phase is probably less than that estimated ( — 300 cma/s) on the basis
of the flow visualization on the rigid plate. This would result in decreased lift and
thrust during the pause phase.

The theoretical model for the supination phase is probably more realistic since
there appears to be clear evidence for the leading-edge rotation and the wing is
relatively stiff for this direction of rotation and should be well represented by the
rigid plate. On the other hand it should be noted that the theoretical model of the
shed vortex is not exactly equivalent to the actual flow patterns. In the analysis it
was assumed that a single vortex was shed from the trailing edge. Its strength, K,
was proportional to the instantaneous rotational velocity w, thus K varied approxi-
mately sinusoidally and in particular it decreased during the later phases of the
motion. Physically, the strength of the vortex increases as w is increasing but certainly
does not diminish as w decreases. When (o starts to decrease a 'stopping' vortex of
opposite sense is shed on the opposite side of the plate. This second vortex will
generate a suction force on the opposite side of the plate which reduces the net forces
acting on the plate. The analytical model simulates this stopping vortex and the
reduction of forces by decreasing the strength of the single 'starting' vortex. In
addition we note that the strength of the shed vortex was determined by satisfying
the Kutta condition at the trailing edge at any instant of time. This implies that
local viscous effects near the trailing edge of the plate are unimportant in determining
the circulation round the plate and the corresponding strength of the shed vortex.

During supination a significant contribution to the calculated forces resulted
from leading-edge suction. Although there was no evidence of flow separation in the
flow visualization experiments the full extent of the theoretical leading edge suction
is unlikely to be realized on a flat plate. On the other hand, the dragonfly's corrugated
wing section (Fig. 2) provides a forward face on which a low pressure could act. For
tfie scull and pause where the wing operates at high angles of attack (about 6o°) the
assumption of a flat plate aerofoil should not lead to appreciable errors.
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During the upstroke the forces were calculated for a flat plate at 300 incidence
using ideal aerofoil theory and accounting for the build up of circulation by Garrick's
(1951) analysis. Firstly the effective angle of incidence may be less due to the induced
effects of the vortices generated during supination. Secondly the wing is likely to be
stalled, reducing the conventional 'lift' and producing high 'drag'. When these
forces are resolved into horizontal and vertical components, the lift is likely to be
less and the thrust about the same as those shown in Table 3 for the upstroke.

6. CONCLUSIONS

1. Weis-Fogh (1973) and Norberg (1975) conclude that steady-state aerodynamics
is incapable of explaining how the dragonfly supports its weight during hovering.
Norberg (1975) also concludes that the wing kinematics of Aeschna juncea L., as
determined photographically, are incompatable with those proposed by Weis-Fogh
(1973) for his 'flip' mechanism. The present paper has proposed an alternative lift
generating mechanism, various aspects of which are novel from the standpoint of
animal flight.

2. An exploratory study of the hovering aerodynamics was conducted as follows.
The flow was idealized as two-dimensional and corresponded to the motion of the
wing at the midspan position as inferred from Norberg's( 1975) data. Flow visualization
tests on a flat plate in water at the appropriate Reynolds numbers determined this
time-dependent two-dimensional flow field over a complete wing-stroke cycle. In
particular the positions and strengths of vortices were determined. This information
was used as the basis for modelling the flow field. The forces were analysed for each
phase of the motion using unsteady potential-flow theory.

3. The force analysis produced a plausible balance of the horizontal forces but
a lift force over four times the animal's weight. In view of the numerous simplifications
that were made, such as the neglect of finite wing and other three-dimensional
effects and the assumption of potential flow, it is not surprising that the lift was
overestimated. Indeed the fact that the calculated lift is more than adequate to
support the weight suggests that the essential lift-generating mechanisms have been
identified.

4. During the wing stroke two phases make the major contributions to the lift
and both involve novel lift mechanisms. In one, lift results from suction associated
with a leading-edge vortex rotating above the wing during a pause in the down-
stroke. In the other, lift is developed during supination by leading-edge suction
combined with suction from a trailing-edge vortex.
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