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SUMMARY

1. Ciné micrographs were taken of the flagellated protozoan Crithidia
oncopelti under dark-ground illumination. Coordinates of images of the
flagella were obtained from the ciné frames by back-projection and automatic
data acquisition.

2. Theflagellar waveforms of proximally directed waves were characterized
using a Fourier-series method and compared by this means with a number
of analytical curves. The shape of a wave remained constant as it was
propagated and, of the curves suggested, a wave consisting of circular arcs
connected by straight lines gave the best fit.

3. The variation of bend curvature as bends moved along the flagellum
was also found, for both proximally and distally directed waves.

4. The wavelengths and speeds of proximally directed waves increased
linearly with distance as they approached the base of the flagellum, while in
distally directed bends the curvature remained constant but the velocity
increased as bends moved away from the base.

5. Causes of the above behaviour are discussed and it is concluded from
the variation of curvature with time for proximally directed flagellar waves
that unbending must be an active process.

INTRODUCTION

Waves of bending are propagated along flagella as a result of the mechanochemical
reactions which occur within the organelles. The currently favoured hypothesis of
flagellar bending, based on the evidence of electron and optical microscopy (Satir,
1976; Summers & Gibbons, 1971, 1973), assumes that relative sliding occurs between
the various axonemal microtubules. These microtubular interactions become apparent
as changes in the shape of the flagellum, and a careful examination of the shapes of the
wave should yield useful information about the relative positions of the microtubules
during movement. An exact knowledge of the wave shapes, and their behaviour as a
function of time and of position along the flagellum, may also provide evidence of use
in the construction of mechanochemical models of the system.

In hydrodynamic analyses of flagellar propulsion it is often convenient to approxi-
mate the wave shape by a sine wave (e.g. Holwill, 1977), although it is recognized that
this s not an accurate representation of the real shape. While this sinusoidal approxi-

pination leads to reasonably accurate predictions of swimming speeds in certain cases,
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Fig. 1. Method of describing flagellar curve in terms of its tangent angle, ¢, and arc lengtt, 8.

it cannot represent faithfully the re-entrant wave shapes which are often observed on
flagella (Silvester & Holwill, 1972). Two alternative wave shapes which resemble
flagellar waveforms, including re-entrant ones, more closely than a sinusoid have been
analysed by Silvester & Holwill (1972). One is the waveform reported by Brokaw &
Wright (1963) for Ceratium flagella, and consists of circular arcs linked by tangential
straight lines — a shape which we shall refer to as arc-line. The other is the meznder,
the shape adopted by a river when flowing over relatively flat terrain. The same curve
arises in the theory of random walks on a plane, and it also describes the bend which
arises on a normally straight elastic beam when the two freely hinged ends are forced
towards each other.

Silvester & Holwill (1972) showed that the meander, arc-line and sinusoidal ‘waves
could be distinguished from one another by representing the curves in terms of arc-
length, s, and the angle ¢(s) between the tangent to the curve at s and a fixed direction
(Fig. 1). The sets of Fourier coefficients of the resulting graphs of ¢ versus s were
readily distinguishable in the three cases. Experimentally, the parameters ¢ and s can
be determined from photographs of flagella and comparisons can be made as described
above between flagellar wave shapes and any of the theoretical curves. In this paper we
report such a study of waves propagated by the flagellum of Crithidia oncopelti and we
discuss the implications of the results,

THEORY

It is convenient to summarize here the mathematical properties of the three waves
mentioned in the Introduction and to indicate how they may be distinguished
analytically from each other. Quarter-wave sections of the three waveforms are shown
in Fig. 2, where the x-direction lies along the axis of the wave. The curves are crawn
such that A /A (where A is the axial wavelength and A, the arc-wavelength) is the
same for each. It is clear that in real (x, y) space the curves are similar and have no
obvious distinguishing features. Distinct differences emerge if the curves of Fig. 2
are plotted in terms of ¢(s) and s (Fig. 3). The curve corresponding to the arc-line
shape shows a discontinuity, which occurs at the point of transition from circular arc
to straight line. The gradient d¢/ds at any point of this curve is equal to the curvature
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Table 1. Fourier coefficients b, to b, expressed as percentages (B,) of b,, for quarter-waves
of various shapes

Relative Fourier coefficients (9%, of b,)

Curve B, B, B, B, B, B, B,
Sinusoid (A,/A = 1'35) 100 13°5 39 10 o3 1<) o
Arc-line
(a) 92 9%, circular arc 100 —1041 326 —1-31 053 —o16 —o0'04
(b) 76 % circular arc 100 — 509 1°33 192 —1'29 048 o012
Meander (A,/A = 1-35) 100 o3 o o o ° o
Sine-generated wave 100 o o o o o °
Tracked sine-generated controls
(means from 12 quarter-waves) 100 — 004 o019 020 —0'29 —002 =—0'I3
Standard deviations of above means - 062 033 031 024 023 019
Tracked C. oncopelti
(means from 259 quarter-waves) 100 — 503 163 —o028 056 —o0b 013
Standard deviations of above means - o057 026 021 016 o017 o'10
Model sine-generated wave (see eqn. 3)*
(a) 100 314 037 o008 0'05 o'o1 002
b) 100 - 339 o018 —o'01I 002 001 —0'01

* (a) Leading quarter-waves, i.e. with zero curvature in advance of greatest curvature. (b) 'Trailing
quarter-waves, with greatest curvature in advance of zero curvature.

of the real waveform at the same value of s and, in the case of the arc-line wave, is
constant and finite for the circular section and zero in the straight region. Tte sine
and meander curves are continuous when plotted as ¢ versus s, but the differences
between them are more striking than in the y v. x plots of Fig. 2. It is relevant to note
here that the meander is very similar to the ‘sine-generated’ wave for which ¢ cc sin s
(Langbein & Leopold, 1965). The ¢(s) v. 8 curve for the meander is almost sinusoidal
in form and cannot easily be distinguished from a curve corresponding to the sine-
generated wave.

In order to compare the flagellar waveshapes with theoretical curves one could
simply plot the experimental data in ¢(s) v. 8 form and select visually that thecretical
curve which appeared to fit the best. Such a technique is to some degree subjective, and
assumes that the flagellar shape will be closely matched by one of the theoretical shapes
which has already been postulated. It is therefore desirable to have a quantitative
method which avoids any possible bias on the part of the observer and provides a
succinct description of the flagellar shape for comparison with other theoretical curves
which may be suggested in the future. A convenient way to achieve this is to represent
the (@, 8) curve by a Fourier series of the form

#6) = Tbusin |en-1)7g)], (1)

where S is the length of the curve of the flagellar waveform to be analysed. The values
of b,, are coefficients which characterize the various harmonic components of the curve
and are given by

bo=2 f :¢(s) sin [(211—1) %] ds (2)
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Fig. 4. A series of consecutive ciné frames of Crithidia oncopelti under dark-ficld illumination,
showing motion of the flagellar wave from tip to base. The interval between frames is 10 ms.

JOHNSTON, SILVESTER anp HOLWILL (Facing p 303)



Shape of flagellar waves in C. oncopelti 303

A given curve has a unique set of values for the coefficients b,, (see, for example, Table
1 and Silvester & Holwill, 1972) so the flagellar wave shapes can be described un-
ambiguously. Comparisons can then be made between the coefficients obtained from
the image of a flagellum and the values of b, obtained from theoretical curves, in
particular those described above.

MATERIALS AND METHODS

A Zeiss RA research microscope fitted with a beam splitter to allow simultaneous
viewing and filming of an object on the microscope stage was used to project images of
C. oncopelti on to photographic film. Two light sources were used: one for viewing
purposes, a xenon stroboscope (Chadwick Helmuth: Strobex model gg, Lamp 718)
triggered by a variable-frequency oscillator and the other, for filming, a 300 W Super
Pressure mercury lamp (Wotan, HBO). The former was used to align the microscope
and for general viewing, since it had a minimal heating effect on the specimen, Just
before filming, a mirror was rotated manually over the iris through which the light
from the xenon lamp passed, so as to block this beam and reflect radiation from the
mercury lamp into the condenser. The heating of the specimen by the mercury
radiation was minimised by using it only for the duration of filming (one or two
seconds). The microscope was used with a Zeiss dry, dark-field, condenser and a Zeiss
40 x planapochromatic oil-immersion objective. A Zeiss FK 10 x variable-focus eye-
piece was used to focus images on the photographic emulsion of the ciné film.

Films were exposed in a Mitchell HS-16F4 ciné camera at a framing rate of 100
pictures/s (pps), giving an exposure time per frame of 2 ms. Kodak 4X (Type 7224)
photographic film was used and was processed, after exposure, in a Gordon 16/35
continuous processor. Development was in Kodak DG-10 developer (diluted 1 to 6
with water) for 2 min at 20 °C. The film was then fixed in Kodak rapid fixer (diluted
1 to 3 with water) for 2 min. A typical series of high-contrast images obtained by this
method is shown in Fig. 4.

Silvester & Johnston (1976) have described an automatic tracking device for the
rapid recording of coordinates from flagellar images which have previously been filmed
with dark-ground illumination. A photosensitive detector positioned over the back-
projected image (final magnification x 3830) supplies signals to an analogue computer
which alters the speed and direction of movement of the detector by controlling
voltages fed to stepping motors. Cartesian coordinates are obtained in the form of
voltages from linear potentiometers which are located along the x- and y-axes of the
projected image and directly coupled to the position of the photosensitive cursor.

A digital computer (PDP-11/10s, Digital Equipment Corporation) was used to
collect, store and display the Cartesian (x, y) coordinate pairs. A programmable unit
(AR-11 interface) linked to the computer enabled analogue voltages from the two
potentiometers to be sampled at a chosen rate (about twice a second) during automatic
tracking. Each coordinate pair obtained in this way was displayed immediately on a
Tektronix storage oscilloscope as a visual check against spurious data. The data were
also punched on paper tape to give a record of the waveform for later analysis.

Sets of coordinates from different frames of ciné film were used as the input for a
FORTRAN 1v digital computer program which calculated values of @, s and 4, (equations
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Fig. 5. Method of identifying quarter-wave sections (g) from (¢, 8) data for harmonic analyuis.
The data shown here are from a typical flagellum but for clarity the number of points plotied
in this figure is about a third of that recorded during tracking.

(1) and (2)). For convenience, output from the computer was recorded on microfilm
(pIMFILM, University of London Computer Centre). In Crithidia it can be seen that the
flagellar wave shape alters as an individual bend moves along the flagellum. To obtain
a quantitative estimate of this change, and to overcome the analytical problems of
working with a non-uniform flagellar wave train, the flagellum was divided into
quarter-wave segments for analysis. From plots of ¢ versus 8, half-wave segments were
selected which lay between successive turning points of the curves (see Fig. 5). The
corresponding set of data was divided into two groups, lying above and below the
mean value of ¢, thus defining two quarter-wave segments for analysis. The groups of
data were manipulated to orient all the quarter-waves as shown in Fig. 3 and values of
b, were derived by using equation (2) and suitable iterative numerical integration
procedures (Pennington, 1970; Johnston, 1978).

To test the accuracy of the experimental and numerical procedures, sine-generated
curves which had approximately the same width, amplitude and wavelength as waves
observed in ciné films of Crithidia flagella were produced on 16 mm microfilm. These
‘control’ images were tracked and the resulting data processed as described above to
obtain values for the Fourier coefficients which were compared with analytically
calculated values of b,. Similar experiments were performed with slightly defocused
control images, to simulate the indistinct edges in images of real flagella.

In total 77 frames of data collected from 16 individual organisms were examined
with an average of about 140 coordinate pairs being recorded for each frame. A typical
frame is reproduced in Fig. 6. Sections of waves taken from the tip or base often had
lengths between o and o-25 wavelengths and were not used in the final statistical
calculations since their analysis as full quarter waves would have produced erroneous
coefficients. The number of coordinate pairs used in each quarter-wave Fourier fit lay.q
between 12 and 70 with a mean of about 30 points depending on the individual
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Fig. 6. The x, y data recorded during tracking of a ciné frame of C. oncopelti. (For clarity, only
every fourth data point is plotted here.) The corresponding ¢, 8 data are shown in Fig. s.

flagellum. Each quarter wave was assigned a value of 8 corresponding to the position of
its maximum curvature along the flagellum.

We also obtained values for the mean curvatures (d¢/ds) from half-wave segments
of the flagellum by measuring the mean slope of the approximately straight regions of
the ¢, 8 curves (Fig. 5). In this way we found how the curvatures of the bends varied
as they moved along the flagellum. This was done both for normally beating flagella
(waves propagated from tip to base) and for those in which waves travelled from base
to tip.

RESULTS

By analysing sine-generated waves as a control and examining their Fourier coeffi-
cients it was possible to obtain estimates of the errors introduced by the experimental
and numerical processes, since in this case only the first term in the Fourier expansion
(5,) should be present, all the higher terms having zero amplitude. Results of this test
are presented in Table 1, where the relative amplitudes of the coefficients are presented
as percentages (B,) of the first coefficient. It can be seen that the experimentally
derived value of By is closer to zero than its own random error, which is 0-6 %,, while the
relative values of higher coefficients have random errors of about 0-3 %, and also show
no significant deviations from zero. Slight defocusing of the control images was found
to have no adverse effect on the stability of the tracking process.

Values of B, for quarter waves taken from Crithidia flagella were calculated and
plotted against s for each coefficient. The resulting scatter-graphs for the second and
third coefficients for all organisms examined are shown in Figs. 7 and 8. These plots
reveal a variation in the relative amplitudes of the coefficients at different points along
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Fig. 7. Values of the second Fourier coefficient (b,) as a percentage of the first, plotted agains:
the position of the corresponding quarter-wave along the flagellar length. (m denotes the mearn
value for the points on the left of the dashed line.)
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Fig. 8. Values of the third Fourier coefficient (4,) as a percentage of the first, plotted against
the position of the corresponding quarter-wave along the flagellar length. (m denotes the mean
value for the points on the left of the dashed line.)

the flagellum. Over the approximate range 8 = o—14 #m (indicated by the dashed
lines in the figures) the spread of points remains roughly constant, while over the
range 8 = 14-18 um the spread increases. We used only the coefficients from the
lower range (8 = 0-14 #m) and the mean values of B, and their standard errors are
shown in Table 1 (the means are indicated by the arrows in Figs. 7 and 8). For
comparison the theoretical values of B, for hypothetical shapes are also tabulated. A



Shape of flagellar waves in C. oncopelti 307

Fig. 9. A generalized wave shape for Crithidia oncopelti, reconstructed from the mean experi-
mental values of B, obtained by the analysis of about 200 quarter-waves.

Curvature
(=}

Fig. 10. Curvature plotted against arc length for the generalized wave shape shown
in the previous figure.

generalized wave shape for Crithidia, reconstructed from the mean experimental values
of B, is shown in Fig. g. The corresponding graph of curvature against s for this
wave shape is shown in Fig. 10.

We have also attempted to describe the observed ¢, s curves for a whole flagellum, in
terms of a sine-generated wave which moves from the tip of the flagellum to the base
with a speed which increases linearly with distance from the distal end. This reflects
the experimental observation that in C. oncopelt: the wavelengths of the flagellar waves
increase as they approach the base. In addition, the amplitude of the ¢, s curve
increases as it leaves the tip and this was simulated by making the ¢ amplitude of the
sine-generated wave increase to a steady value in the manner of (1 — =), The resulting
travelling wave which was fitted to the observed results was of the form shown below:

$ = A(1—exp (—mr)) sin 27 (k log (1 +7/s5)~T), (3)

where A is the maximum value of @, r is a normalized distance along the flagellum
which increases from o at the tip to 1 at the base, and k, s, and m are constants. T
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Fig. 11. The result of fitting equation (3) (see text) to ¢, 8 values from the whole length of a
typical flagellum. The theoretical curve is represented by the solid line and the experimental
values by the points.
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Fig. 12. Curvature data from 20 ciné frames of an individual flagellum corresponding to about
five flagellar-beat periods. The arrowed points are probably atypical (see text). The crois
represents an estimate of the error asgociated with each point.

represents time measured in units of the flagellar beat period. The speed of the travel-
ling wave can be shown to be dr/dT = (r+s,)/k, i.e. a speed which increases linearly
with r, the normalized distance from the tip. (The logarithm in the above equation is
thus necessary to describe the observed variation in speed and wavelength.)

Typical values obtained on fitting the parameters to the data from selected ciné
frames of flagella were: 4 = 60°, k = 065, s = 0'17, m = 15. The root-mean-square
deviation of predicted values of ¢ from the real data points was typically 8-13° and tha
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Figf. 13. Tracings fr.om congecutive ciné frames of C. oncopelti beating in reverse and propa-
gating an asymmetrical bend (arrowed) from base to tip. The interval between frames is 10 ms.
Time (t) increases from left to right and the lower sequence follows directly on the upper one.
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Fig. 14. Curvature data for a single flagellar bend moving from base to tip. The measurements
extend over one period of the flagellar beat. The dashed lines enclose observations which were
made while both extremities of the bend were visible on the flagellum. The cross represents
an estimate of the error associated with each point.
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Fig. 15. The positions of the bending points (closed circles) and unbending points (open
circles) of the bend described by the previous figure, plotted as a function of time. The dashed
lines enclose the time during which both bending and unbending points were visible. The
vertical bar represents the error in determining the positions of the bending points.

fitted curves seemed to give a satisfactory visual match with the ¢, s curves (Fig. 11).
However, to obtain quantitative comparisons with the experimental data, wave seg-
ments of this model travelling sine-generated wave were analysed in terms of their
Fourier coefficients, and the resulting values are shown in Table 1.

The Fourier coefficients for two other wave shapes were also calculated for com-
parison with the experimental results. One of these was a series of meander arcs
joined by straight regions while the other consisted of circular arcs linked bty the
‘straight’ sections of a meander. The precise form of either curve can be adjusted by
varying the proportion of the two shapes present on the wave, and this was done in an
attempt to fit the experimental data. It was not possible to obtain a closer match to the
set of experimental coefficients with either wave shape than has been obtained with
the arc-line wave. The reasons for considering these particular wave shapes will be
clarified in the Discussion.

Some typical results of analysing the curvature of the flagella are shown in Fig. 12,
which displays data obtained from twenty frames of ciné film (about g5 flagellar beats)
of one flagellum. Curvature is high at the tip and base of the organelle and has a
minimum value between s = 4 um and s = 7 um. Some values (arrowed) may be
considered as spurious since they were caused by a straight portion of the flagellum
observed near the tip (see Discussion). These lower values were not obtained when
data were collected from organelles showing no straight region at the tip.

On examining flagella which were propagating bends from base to tip, we found
two forms of this reversed beating: at higher frequencies (c. 7 Hz) the waves appear
symmetrical, whereas at lower frequencies (c. 3-5 Hz) they are asymmetrical The
second form of beating is most commonly observed. Fig. 13 shows tracings frora cin
frames of an organism propagating such an asymmetrical bend along its flagellum. I®
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jan be seen that the curvature of the bend remains approximately constant until the
bend approaches the tip of the organelle.

Fig. 14 shows typical values of curvature obtained from an organism beating in
reverse as described above. The data are from a single bend which moved from base to
tip. The curvatures are plotted against the distance the bend has travelled along the
flagellum; the measurements extend over one period of the flagellar beat, i.e. about
4 8. It can be seen that, over the region between the dotted lines, the curvature re-
mained approximately constant. In Fig. 15 the closed and open circles show the
positions of the ‘bending’ and ‘unbending’ points of the bend of the previous Figure,
as a function of time. (These are defined visually (Brokaw, 1970) as the points of
transition on the flagellum between bent regions and those unaffected by the presence
of the bend.) The distance between these extremities of the bend at any time remained
approximately constant (4:3 + 0-5 #m) over the beat period while the wave velocity,
which is given by the slope of these curves, increased from 25 to 93 ums—1. The
dashed lines in Figs. 14 and 15 enclose the time within which both the bending and
unbending points were observable on the flagellum.

DISCUSSION

In this paper we have presented results obtained from a critical analysis, based on
the Fourier technique described by Silvester & Holwill (1972), of waveforms on the
flagellum of the protozoan Crithidia oncopelti. Coordinate data from the waveforms
were recorded using the system described by Silvester & Johnston (1976). The
accuracy of the recording technique can be assessed by inspection of the coefficients
for tracked sine-generated controls shown in Table 1. It can be seen that the experi-
mental values agree with the theoretical ones (i.e. all zero exept B,) within the limits
of experimental error, indicating that the method is sufficiently accurate for analytical
purposes.

The distribution of the coefficients, B, for flagella about their mean values is
approximately symmetric within the range o < 8 < 14 um (e.g. Figs. 7, 8) thus
indicating that the type of wave form remains unaltered as a bend propagates, although
the amplitude and wavelength may vary. The greater spread in the values of the
coefficients, and the asymmetry, apparent for values of 8 larger than 14 um, is due to
the presence beyond this length of a straight section which requires coefficients of
greater magnitude for its representation. Inspection of the mean values of the coeffi-
cients and their standard errors (Table 1) shows that the quarter-wave sections of the
flagellum of C. oncopelti are more closely approximated by the arc-line wave than by
the sine wave or meander. Since significant differences exist between the mean experi-
mental values and those for sine waves or meanders, the probability that these shapes
accurately represent flagellar wave shapes is small. The experimental values do not
match exactly those of an arc-line wave with a particular ratio of circular arc length to
straight line length, but fall in a region where there is between 76 and 92 %, circular
arc. These results are thus reasonably consistent with the view of Brokaw and others
(e.g. Brokaw & Wright, 1963; Brokaw, 1965; Goldstein, 1977), which is that flagellar
Jmaves are basically arc-line in character, although the authors do not preclude the
bossibility that an alternative description is possible.
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One alternative which we considered is represented by equation (3) (p. 307) and i
based on the sine-generated approximation to a meander with modifications to allow
for the increase in amplitude of ¢ and arc-wavelength which occur as a wave is
propagated. The effect of the modifications is to cause the coefficients other than B,
to be non-zero, as shown in Table 1. This variation of the coefficients is, however,
different from that found experimentally and we conclude that the curve represented
by equation (3), although it visually approximates the wave forms seen on Crithidia,
does not provide an accurate description of flagellar wave shapes when judged by the
criteria of Fourier-series analysis.

The mechanochemical events within a flagellum which give rise to bending, may
also produce varying mechanical properties along the flagellar length. For example,
the attachment of spokes to the central sheath in one region of the organelle (Warner &
Satir, 1974) may impart to that region different elastic properties from those of a
region where spokes are unattached. It is thus possible that bending in one section of
the flagellum is dominated by its elastic properties whereas in a neighbouring region
the elasticity of the system has a negligible effect on deformation. We therefore con-
sidered two further shapes for analysis: the first, meander curves linked by straight
regions and the second, circular arcs linked by sections of a meander curve. Although
each of these two wave forms can be generated in such a way as to give a reasonable
visual match to the flagellar wave shape, in neither case does the set of Fourier coeffi-
cients approximate to the experimental set as well as the arc-line coefficients.

We are therefore led to conclude that the form of flagellar waves on Crithidia
oncopelti is predominantly arc-line in character, with small deviations induced by the
mechanism and structure of the system. Brokaw (1966) has suggested that the tran-
sition from circular arc to a straight line represents an abrupt change in terms of
molecular mechanisms. If this hypothesis is correct, as Brokaw notes, the elastic
elements which the flagellar system undoubtedly contains, together with the fluid
viscosity, will cause the curvature at the transition points to change smoothly rather
than discontinuously, even if the active internal forces exhibit discontinuous behaviour.

The available evidence suggests as a model for flagellar bending an active mechanism
(the sliding microtubules) which tends to bend the flagellum into a circular arc, with
the motion of the system influenced by elasticity and viscous interaction between the
flagellum and its fluid environment. Since the velocity of a bend on the flageltum of
Crithidia is approximately constant over a quarter wave, the data of curvature against
8 (Fig. 10) derived from the average wave shape of the flagellum also represent the
variation of curvature with time over a quarter cycle and may therefore be used to
examine the role of elasticity in the behaviour of the system. Now it can be shown
theoretically that the curvature of an elastic rod subjected to an active bending
moment and immersed in a viscous fluid will approach a maximum value (which will
depend on the elastic properties of the rod) with a dependence upon tirae, ¢, of
(1 —e~*), where k is a constant. If the moment is suddenly reduced to zero with the
rod in a bent configuration, the passive elastic forces within the rod will cause it to
straighten in such a way that the curvature decays exponentially with time, as (e~*).
Although the increases from zero of absolute curvature with time shown by Fig. 10
can be matched reasonably by a term of the form (1 —e~*), the decreases of absolufl
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curvature towards zero do not exhibit exponential decay, so that unbending is not
dominated by passive elasticity. We are led to conclude that unbending, as well as
bending, is induced by active components within the flagellum. It is, however, not
possible to obtain from our observations unequivocal information about the magnitude
of the elastic constants characteristic of the flagellum. (A knowledge of these would
enable more information about the time-dependence of the active bending moments
to be deduced from the observed variation of curvature.)

The extensive analysis performed on the waves propagating from tip to base could
not be carried out on bends propagating in the reverse direction because the asymmetry
which was generally present precluded objective division of the flagellum into quarter-
wave sections. The half-wave analysis which was used for the waves propagating from
base to tip revealed that a bend did not change its curvature during propagation until
it reached the final 2 um of the flagellum (Fig. 14). This behaviour differs from that of
waves propagated from tip to base, in which case the curvature decreases as a bend
leaves the tip and then increases markedly as a bend approaches the flagellar base
(Fig. 12). A further difference is that the constant curvature of the distally directed
waves is generally larger than the maximum curvature attained by waves moving
towards the base. The significance of these differences is not clear but is presumably
associated with the mechanism which is responsible for causing the wave direction to
reverse. Since the proximally directed waves are usually propagated at a higher
frequency than those which are directed distally, the greater curvature achieved in the
latter case could be the result of a constant bending moment acting for a longer period
of time. An alternative explanation for the greater curvature might lie in the dependence
on the sliding rate of the force generated by the microtubules. If, as in muscle, greater
forces are generated as the rate of sliding decreases, the slower a flagellum beats the
greater will be the bending moment developed by the microtubules. A maximum limit
to the curvature is probably set by the structure of the flagellum, so that an increase
in the bending moment will have no effect on the curvature once the maximum value
is reached. The slower rate of microtubular sliding could affect the length of the
flagellum which is bent after conditions appropriate to maximum curvature have been
reached. There is some indication that this may be the situation for distally directed
waves, for which re-entrant shapes are often observed (Fig. 13; Holwill, 1965). How-
ever, this type of behaviour is not observed for waves propagating from tip to base
along flagella in a medium sufficiently viscous to produce the lower frequencies (and
hence the lower microtubular sliding velocities) observed on the distally directed
waves (Holwill, 1965). It seems likely, therefore, that the differences in behaviour for
the waves propagating in the two directions are associated with the mechanism for
wave reversal rather than being inherent in the bending mechanism itself.

The speeds of bending and unbending points for distally propagated bends increase
with distance along the flagellum (Fig. 15). A similar result is obtained for the proxi-
mal portion of sea-urchin sperm tails (Brokaw, 1970; Goldstein, 1977) but in that case,
at distances greater than about 1o #zm from the base, the unbending and bending
points then travel at constant speed. For the sea-urchin sperm tail, the behaviour of
the propagation velocities in the proximal region is probably associated with the
Proximity of the basal structures or the requirements for wave initiation, or possibly
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with both. On the basis of this comparative observation, it appears that the Crithidia
flagellum is sufficiently short that most of its length is affected by similar constraints
to those in sea-urchin sperm.

Analyses of wave shapes for echinoderm spermatozoa have been presented by
Rikmenspoel (1978) and by Hiramoto & Baba (1978). These authors report that the
curvature of starfish and sea-urchin sperm tails can be described by a sinusoidal
function of time with a phase term which is dependent on distance along the flagellum.
In all cases studied the phase term was approximately proportional to distance over
the whole flagellum except for the basal 10-15 #m. Since the flagella are about 56 um
in length, the major portion of the flagellum appears to form a sine-generated wave.
In the basal region, the phase term no longer changes in a linear way with distance, so
that the wave form in this part of the flagellum is not sine-generated, but assumes
some other shape. There is insufficient information available to allow an evaluation
to be made of the wave shape near the base, but it is reasonable to suppose that the
modification to the shape has its origins in the same factors which cause the change in
the propagation velocities discussed earlier, namely the influence of basal structures or
the requirements for bend initiation.

Visual curve-fitting procedures have led to descriptions of flagellar wave shapes as
arc-line (e.g. Brokaw, 1965) meander-like (e.g. Brokaw, Goldstein & Miller, 1970;
Rikmenspoel, 1971) and sine-generated (Sarashina, 1974; Rikmenspoel, 1978;
Hiramoto & Baba, 1978). As emphasized earlier in this paper, differentiation between
these wave forms on the basis of a visual technique may incorporate subjective bias,
and it is necessary to use objective methods, such as that described here, to avoid this
problem. It would be interesting to apply the Fourier technique to the flagella studied
by other authors so that an independent quantitative assessment of wave shape might
be obtained.
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