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SUMMARY

Steady-state aerodynamic and momentum theories were used for calcula-
tions of the lift and drag coefficients of Plecotus auritus in hovering flight.
The lift coefficient obtained varies between 3-1 and 6-4, and the drag
coefficient between — 5-0 and 10-5, for the possible assumptions regarding
the effective angles of attack during the upstroke. This demonstrates that
hovering flight in Plecotus auritus can not be explained by quasi-steady-
state aerodynamics. Thus, non-steady-state aerodynamics must prevail.

INTRODUCTION

Hovering flight is a common habit of the long-eared bat Plecotus auritus, which
has crowns of broad-leafed trees as its main feeding habitat. It has a very agile and
manoeuvrable flight and is even able to fly vertically up and down for short periods.
It often flies very slowly and can therefore make sharp turns in narrow spaces.
Hovering is a very power-demanding type of flight. It is consistent with steady-state
aerodynamics in hummingbirds and a variety of insects (Weis-Fogh, 1972, 1973), but
this is not so in some insects (Weis-Fogh, 1973; R. A. Norberg, 1975) and the pied
flycatcher (U. M. Norberg, 1975). Its aerodynamics has not been previously worked
out in bats.

The purpose of this investigation is to find out if hovering flight in the long-eared
bat, Plecotus auritus, is consistent with steady-state aerodynamics, or if it has to be
explained by non-steady-state phenomena. The kinematics, aerodynamics, and
energetics of slow horizontal flight in P. quritus can be explained by steady-state
aerodynamics (Norberg, 1976). Previously obtained data for the kinematics of hovering
flight in P. auritus (Norberg, 1970) have been used in the present analysis and evalua-
tion of the aerodynamics of hovering flight in this species.

MATERIAL AND METHODS

Body measurements and flight parameters for hovering flight are given in Table 1.
Calculations are based on previously described data from a wing-stroke in hovering
flight (Norberg, 1970) (Figs. 1 and 2).

The average force coefficients are estimated with the same method as for horizontal
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Table 1. Body measurements and flight parameters for hovering flight

in Plecotus auritus

Stroke angle, ¢ 120° = 2'1 rad
Stroke frequency, n 11°:35 Hz
Angle of tilt of stroke plane, 8 30°
Induced wind, V; o-8om s™!
Air density, p 1-22 kg m~3
Body weight, W 00883 N
Wing area, 4 00123 m?
Wing span, b o270 m
Wing length, R o124 m
Aspect ratio, b%/A4 59

Wing loading, W/A 718 N m=~?
Flight muscle mass/body mass o'137*

* Data from Betz (1958).
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Fig. 1. The wing-movement cycle of Plecotus auritus in hovering flight, viewed from the side:
a-m, downstroke; n—z, upstroke. (From Norberg, 1970.)

flight (Norberg, 1976). It involves the use of steady-state aerodynamic theory for
calculation of average lift and drag coefficients. The magnitudes of the force coefficients
thus derived are then used to judge the plausibility of the concept of steady-state
aerodynamics in this state of flight. The average force coefficients obtained with this
method of calculation must not exceed the maximum coefficients of lift and drag
obtainable at the Reynolds number under which the wings operate, if steady-state
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Fig. 2. Lateral projection of the movements of the wings, hind legs, and tail of Plecotus
auritus in hovering flight. The tracks of different parts of the wings and tail are traced relative
to the shoulder joint and long axis of the body. The uropatagium (tail membrane) is in its
uppermost position when the wings are in about the middle of the downstroke. The numbers
indicate each 100th of a second from the uppermost position of the wings. The figure is based
on 42 frames (separated by ca. 2-1 msec). The positions as traced from the frames are indicated
by dots. Figs. 1 and 2 are based on two different representative wing-strokes. (From Norberg,

1970.)

aerodynamics prevail. The method constitutes a further development of Weis-Fogh’s
(1972) formulae for calculation of C;, in hovering flight, and of Pennycuick’s (1968)
formulae for calculation of the resultant force coefficient in horizontal flapping flight.
The new development results in an equation system expression from which the two
average force coefficients, Cy, and Cjp, can be solved. The force coefficients thus
obtained are the averages that actually prevail if steady-state aerodynamics prevails.
Weis-Fogh calculated only the average lift coefficient and assumed a certain lift/drag
ratio. He did not separate the upstroke and downstroke, but made calculations for
half a downstroke and multiplied the value by 4, since hummingbirds and several
insects have a rather symmetrical stroke. The hovering flight in Plecotus is unsym-
metrical, i.e. the kinematics of the upstroke differs considerably from that of the
downstroke. Hence, the upstroke and downstroke are treated separately in this
investigation.

The general outline of the method (Norberg, 1976) is as follows. The sum of the
vertical components L., (7, t) and D, (7, t) of the lift and drag forces, respectively,
as integrated over the time of a whole wing-stroke and over the whole wings, must
equal the weight, W, of the bat as integrated over the same time, and is
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where 7 denotes the spanwise distance from the fulcrum (humero-scapular joint) to
the middle of a chordwise strip of the wing, and T denotes the time of a whole wing-
stroke. The wing was divided in NV chordwise strips, each 1 cm wide.

In the same way the sum of the integral of the horizontal components in the direc-
tion of the flight path, L, . (7, t) and Dy, (r, t) of the lift and drag forces, respectively,
must equal the time integral of the body drag of the bat. In hovering the body is
immersed in the induced wind that probably is nearly vertical. The body therefore
experiences a nearly vertical downward drag force, the horizontal component of which
should be negligible. Therefore, the horizontal body drag is set equal to zero. Then,

0 = [ £, (Cnor 00+ Do (1) (@)

t=0 Lr=

Actually, the vertical component of the body drag force due to the induced wind
should be added to W on the left side of equation (1). Since its magnitude is very
small this force is also omitted.

Cy and Cp enter the above two equations via Ly (7, 2), Dyert (75 t), Lyor (7, 1), and
Dy (7, t), respectively, which are defined below. These two unknowns (Cy, and Cp)
thus can be solved from equations (1) and (2).

The lift force, L(r, t), and drag force, D(r, t) at a chordwise wing strip at distance
r from the fulcrum, are

L(r,1) = $pV3(r, 1) A()Cy, (3)
and D(r, 1) = 3pV(r, 1) A(NChp, @

where p is the air density, V} (7, t) the resultant airspeed, A(r) the area of a strip at
distance 7 from the fulcrum, and C and Cj, the lift and drag coefficients, respectively.

To obtain the vertical components of these forces, one first has to project the forces
to the vertical plane through and normal to the long wing-axis (fig. 13 in Norberg,
1976). Then, the true, vertical projection has to be found. The true vertical com-
ponents then become

Lyexe(r, 8) = L(r, 1) cos ¥ (1— cos?y sin?f)} (5)
and Doy (1, 8) = D(r, t) sin ¢ (1 — cos?y sin2f)}, (6)
where ¥ is the angle between the incident air and the horizontal and £ is the angle of
tilt of the stroke plane. v is the positional angle of the long wing-axis, measured in the

stroke plane from the intersection below the bat between the stroke plane and a
sagittal plane to the body through the wing hinge, and is

v(2) = 7(2) +4¢ sin (27nt), (7)
where %(t) is the mean positional angle, and ¢ the stroke angle.

The horizontal components of L(r, t) and D(r, t) in the flight path are estimated in
the corresponding way, and are

) I — cos? %
Lyor(r,t) = L(r, ) sin !/f(:Wsz’rﬁTB) ’ (8)

_ ¥
o Dan(r, ) = D, 1) con 7). ©)
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Fig. 3. Velocities (V and v) at, and forces (L and D) acting on, a chordwise wing-segment at a
distance r from the fulcrum (wing hinge) in hovering flight.

(a) Downstroke. The wing section is not indicated but the effective angle of attack is
positive.

(b) Upstroke. The air meets the dorsal side of the wing and the effective angle of attack is
negative.

Positive sign denotes a forwardly directed force; negative sign, a backwardly directed
force.

The instantaneous resultant velocity V;(r, #) is the resultant of the flapping speed
and the induced velocity. The movement of the long wing-axis is almost sinusoidal
with respect to angular displacement. Therefore, the flapping velocity of a wing-
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element at distance 7 from the fulcrum can be conveniently approximated with the
equation for simple harmonic motion,

v(r, t) = rngdn cos (27nt), (10)

where 7 is the stroke frequency.

The air is assumed to be accelerated vertically downwards. The induced velocity
is assumed to be constant and uniformly distributed over a 360° disc with the wing
span as diameter during the entire wingstroke, though there might be fluctuations
in the downstroke and upstroke. According to the momentum theorem for an ideal
actuator disc, the induced velocity at the level of the disc then becomes

W \#
= (5s)” )
where S is the disc area.

From Fig. 3(a) and (b) it can be seen that the resultant airspeed during the down-
stroke is

Vi(r, £)® = u(r, t)2+ V;2—2v0(r, t)¥] sin B, (12)
and during the upstroke

Via(r, t)? = o(r, )2+ V2 +20(r, t)l sin g. (13)
Angle y=o-8 (14)

during the downstroke, and
g =n—(0+4) (15)

during the upstroke, where
sin & = V; cos B/V;(r, t). (16)

Procedure

The wing was divided into three chordwise sections (I-III, Fig. 4) and the area of
each was measured. The arm wing (the part of the wing proximal to the fifth digit)
is flexed during the upstroke, thereby reducing the wing area. The area of the arm
wing was estimated from my films and photographs to be reduced during the upstroke
to ca. 65 9%, of the area of the extended arm wing, and at the reversal points to ca. 80 %,
The hand wing (the part of the wing distal to the fifth digit) was not reduced at all
during the upstroke, nor at the reversal points. The hand wing thus is maintained
fully extended during the entire wing-stroke during hovering, as well as forward flight.

The indices of the horizontal and vertical components of the lift and drag forces
were calculated from equations (5-8) for each of the three sections for 13 time-
equidistant positions during the downstroke, and 13 during the upstroke. The time
of the downstroke is longer than that for the upstroke. This has been taken into account
when calculating the stroke frequency and flapping speed used here. The force
coefficients were then obtained from equations (1) and (2).
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Fig. 4. The bat’s outstretched wing divided into 12 strips, making up three sections (I-III)
which are used for calculations of the force coefficients. (From Norberg, 1976.)

RESULT AND DISCUSSION

The virtual force index curves for the vertical and horizontal components of the
lift and drag forces are shown in Figs. 5 and 6, respectively. The sum of the areas
between the L, index curve and the abscissa, and between the D, index curve
and the abscissa, in Fig. 5, times C;, and Cj, respectively, must equal the area under
the horizontal hatched line for the weight (cf. equation (1)). The areas between the
Ly, index curve and the abscissa and between the Dy, index curve and the abscissa,
in Fig. 6, times C;, and Cj), respectively, must equal zero (cf. equation (2)).

Fig. 7 shows the inclinations of the wing chords (the lines joining the leading and
trailing edges of given sections of the wing), relative to the horizontal, at o-20R,
0'50R, and 0-85R. It was difficult to obtain reliable values from the tracings from the
film for these inclinations of the different strips. For strips 3, 7 and 11, however, there
are some reference points (elbow, thumb, finger joint and tips) (cf. Fig. 4). These
strips were considered to be representative for the proximal (section I), middle
(section II), and distal (section IIT) parts, respectively, of the wing. Only a rough
estimate of the inclinations could be made from the film. However, it is clear that the
angle between wing chord and the horizontal is positive for every section of the wing
for every position of the entire wing-stroke.

During the downstroke, except at the reversal points, the relative wind is meeting
the wing from a direction below the horizontal (Fig. 8). Therefore, the effective angles
of attack (angles between the relative wind and zero-lift lines (Fig. 8) of the wing
sections) are positive for every section of the wing during the entire downstroke,
except at the reversal points, where they seem to be negative. During the upstroke
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Fig. 5. The virtual force indices for the vertical components, Lyer and Dyert, of the lift and drag
forces, respectively, plotted against time. The area under the Ly curve, multiplied by the
lift coefficient, plus the area under the Dy, curve, multiplied by the drag coefficient, must
equal the body weight of the bat as integrated over the whole wing-stroke. The weight is
indicated by a crossed circle on the ordinate and by a hatched horizontal line.

they seem to be negative in most phases, but positive for the distal section of the wing
in at least one phase (cf. Fig. 8). The sign of the effective angles of attack during the
upstroke depends on the size of the zero-lift angle (angle between wing chord and
zero-lift line). Since the zero-lift angle is not known we must consider all possible
alternative cases regarding the effective angles of attack during the upstroke. Hence,
calculations are made under the following alternative assumptions.

(1) If one assumes that all effective angles of attack are negative for all sections of
the wing during the entire upstroke, which they are during most of the upstroke, then
the force coefficients would need to be C, = 3-2 and Cp = 105 (Figs. 5 and 6).
These are unreasonable values if steady-state aerodynamics prevails.

(2) If the effective angles of attack are positive at section III of the wing in two
phases of the upstroke, which is uncertain but estimated from the film (cf. Fig. 8),
then C; becomes 5-0 and Cp, 5°8.

(3) The estimated angles between wing chord and relative wind are high during
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Fig. 6. The virtual force indices for the horizontal components, Ly, and Dy, of the lift and
drag forces, respectively, plotted against time. The area under the Ly, curve, multiplied by
the lift coefficient, plus the area under the Dy, curve, multiplied by the drag coefficient, must
equal zero in hovering flight.

most of the wing-stroke (Fig. 8), and so are therefore the effective angles of attack.
If one assumes that the high angles of attack give only drag and thus zero lift, the lift
force, as averaged over the entire wing-stroke, would become very small, which means
that enough lift would not be produced for the bat to be able to fly. If the lift forces
are assumed to become zero during the upstroke only and the drag force therefore
being assumed to be reduced by 409, the force coefficients become Cz = 3-1 and
Cp = 1'9; and thus L/D = 1-6. These values might be the most probable ones. The
40 Y%, reduction of the drag is adopted from Pennycuick’s (1971) wind-tunnel studies
on Rousettus in gliding flight.

(4) If all effective angles of attack are positive during the upstroke, C;, would need
to take the value 64 and Cp, — 5-0, which are impossible values if steady-state aero-
dynamics prevails.
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Fig. 7. Wing chord angles, relative to the horizontal () at three chordwise positions of the
wing at radial distances 0-20R, o'50R, and 0-835R, respectively, from the wing hinge (corre-
sponding to the middle of strips 3, 7 and 11, respectively) plotted against time for the bat in
hovering flight. Based on film data.

Taking into account the above alternatives, which cover all possibilities, the
calculations based on quasi-steady-state aerodynamics thus result in values for the
force coefficients which are not consistent with quasi-steady-state aerodynamics.
Thus, non-steady-state aerodynamics must prevail, and another approach must be
taken to explain the hovering flight.

Weis-Fogh (1973) devised a generalized, quick method to calculate the lift co-
efficient in hovering animals. To get the corresponding drag coefficient, and hence
L/D ratio, he used experimental lift/drag diagrams of aerofoils of suitable form and
aspect ratio, so his drag coefficient refers to stiff aerofoils and not to the actual wing.
The lift/drag ratio he used for Plecotus was 6-5. He further assumed that the wing-
stroke was symmetrical as in hummingbirds. With data from Norberg (1970), i.e.
the same set of kinematic data as used here, he then calculated the average coefficient
of lift to be 1°3. From this result he drew the conclusion that hovering flight in
Plecotus can be explained mainly by steady-state aerodynamics. However, the wing-
stroke in Plecotus hovering flight is unsymmetrical, so the upstroke has to be treated
separately.

Slow horizontal flight (2:35 m s™!) can be explained by quasi-steady-state aero-
dynamics (Norberg, 1976). It is presumable that the lower the flight speed is, the
larger the relative importance becomes of non-steady-state aerodynamics in force
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Fig. 8. The angles between wing chord and relative wind (a,,) at three chordwise positions of
the wing (at radial distances 0-20R, 0'50R, and o'85R, respectively, from the wing hinge)
plotted against time for the bat in hovering flight. Based on film data. The zero-lift line is
indicated arbitrarily in the inset figure on top right. The angle between this line and the wing
chord, the zero-lift angle, is not known.

generation. In hovering, most or all of the vertical forces have to be explained by
non-steady-state mechanisms.

1 am indebted to Professor T. Eeg-Olofsson, Chalmers University of Technology,
Géteborg, for making available a high-speed film camera, and to Civ.-ing. K. Pehrsson
and Ing. R. Nilsson, Chalmers University of Technology, for filming aid. I also
thank Dr C. J. Pennycuick, Department of Zoology, University of Bristol, for valu-
able comments upon the paper.
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