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INTRODUCTION

Alternative mechanisms have been proposed to account for the attachment of the
gut flagellate Giardia to the intestinal wall of its host. The morphology of this proto-
zoan is dominated by a large ventral disc which in traditional description functions as a
sucker. However, recent electron-microscope studies of G. muris have conflicted in their
interpretation of the role of this disc and structures associated with it.

Friend (1966) considered the disc to be a supporting pontoon without suction
properties and suggested that a ventro-lateral flange around the disc effects attachment
through a mechanical grasping action. The evidence for this view is found in the close
approach of the ventro-lateral flange and host-cell surfaces and in the presence within
the flange of a flexible plate showing ultrastructural similarity to paramyosin-contain-
ing filaments precipitated from invertebrate muscle proteins.

Reasons for questioning this hypothesis have been given in an earlier paper which
also sought to reaffirm suction pressure within the disc as the force promoting attach-
ment (Holberton, 1973). The origin of this force is a fluid flow maintained beneath the
cell by continuous beating of a ventral pair of flagella. The suction pressure developed
hydrodynamically is transmitted hydrostatically through a portal in the disc rim to the
suction disc cavity.

The Giardia attachment mechanism is clearly an unusual one; but, set alongside the
ultrastructural studies, to correctly identify these forces raises questions of wider
implication. For instance, the suction disc is supported by a cytoskeleton of unusually
cross-bridged microtubules. The same microtubules are linked by side-arms to the
ventral plasma membrane. To what extent may this molecular architecture be related
to local deforming forces of appreciable magnitude?

Originally it was shown by empirical argument that a negative pressure gradient will
be set up by changes in the velocity and viscous stress parameters of the flow (Hol-
berton, 1973). The approach used was a qualitative one, a simply analogy to the Ber-
nouilli analysis of ideal fluid flow based on the principle of energy conservation along a
streamline. In the present paper this analogy is discarded in favour of a more rigorous
model derived from the fundamental equations of viscous flow to demonstrate the
origin of suction pressure beneath the cell. The analysis predicts the separate contri-
butions of velocity gradient and viscous stress gradient components to the net suction
pressure, and allows an appraisal of the extent to which maintained adhesion is inde-
pendent of fluctuations in flagellar beat rate or changing wave parameters.
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Text-fig. 1. The ventral aspect of Giardia attached to glass. Contact of cell and substrate
(indicated by hatching) at the disc rim and ventro-lateral flange margin defines a Y-shaped
channel of ventro-lateral (vl) and ventro-caudal (uc) sections, respective lengths [/ and /, pm.
The open-headed arrow indicates a single streamline of achieved fluid velocity u cm sec™?,

MATERIALS AND METHODS

The calculations of this paper are based on measurements from electron micrographs
of Giardia muris fixed in situ on the wall of the small intestine of the mouse, and from
phase-contrast micrographs of freshly excised trophozoites attaching to glass slides.
Electronic flash exposures were used to ‘freeze’ flagellar movement, a rotating aper-
ture stroboscope to determine beat rate. These methods have been described in greater
detail elsewhere (Holberton, 1973).

OBSERVATIONS

Although Giardia is an organism that has received little experimental attention, its
detailed morphology has recently been described (Holberton, 1973). Briefly, in plan
optical section the trophozoite appears kite-shaped, the broad anterior of the cell
derives from the large circular and concave adhesive disc of the ventral surface. The
translational movement of the detached cell is saltatory and erratic, the outcome of
the combined motion of eight beating flagella. The cell body tends to rotate slowly
about the longitudinal axis during this irregular progression. Once attached to glass
the flagella, with the exception of the two ventral flagella, beat intermittently, and it is
the continuous undulations of this pair that result in a flow of fluid around the attached
cell.

The ventral axonemes arise as free flagella within the sucking disc, pass through the
portal in the posterior rim of the disc, and are housed in a shallow longitudinal groove
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Table 1. Wave parameters of ventral flagella at various
Jrequencies from individual protozoans attached to glass

Mean Mean Wavelength
Frequency wavelength, A amplitude, 7 non-uniformity
(Hz) (um) (um) nk (A2)maxl (A2}t
18 §°I o071 o087 17
12 47 074 099 7
9 45 098 1'37 -8
7 42 1-03 1°54 22
2'5 39 128 2-03 22

of the ventro-caudal surface (P). 1, fig. 1). This groove is continued forward to either
side of the sucking disc by the arched profile adopted by the ventro-lateral flange, a
flexible cytoplasmic lip flanking the disc perimeter. The flange is raised at the front of
the cell but meets the substrate laterally, so that with general contact between the
ventral surface and the substrate (glass or gut epithelium) the sucking disc cavity is
sealed at its rim leaving a Y-shaped channel beneath the cell (Text-fig. 1). The arms of
the Y (ventro-lateral flanges) meet at a point immediately behind the disc portal (the
channel throat), while the stem of the Y (ventro-caudal channel) encloses the beating
flagella. In the attached cell, fluid movement is led entirely through this channel, but
when an unattached cell initially approaches a substrate, part of the flow passes
through the open aperture of the unsealed ventral disc and may contribute directly to
the attachment event. Such an effect is ignored by the following analysis which rests
on the premise that, since detachment follows the interruption of flagellar activity,
maintained attachment may be separately examined, solely as a steady-state function
of the constant fluid flow through the ventral channel.

On a deformable substrate, contact between host and protozoan cell surfaces ulti-
mately becomes intimate (to within 20 nm at the disc rim) and it is possible that short-
range forces, such as might normally operate between cells of a tissue (Curtis, 1967),
may prevail. Since the host-surface cell is distorted during attachment, the effective-
ness of forces of close adhesion will depend on the size of restoring forces within the
deformed cell cortex; for instance, the extent to which initial strains are truly elastic
or might be diminished by the viscous flow of cortical cytoplasm. However, totally
effective close adhesion would deny reversibility to the attachment mechanism, and
the finding of a conserved sinusoidal waveform of the ventral flagella in electron micro-
graphs suggests a requirement for continuous flagellar beating in situ on the gut wall as
well as on glass substrates.

Observation and photography of the base-to-tip wave propagated by the double
shaft are aided by the sessile habit of the organism, and all data relating to flagellar
activity used in this analysis are taken from organisms attached to glass. Some examples
of wave parameters determined at different frequencies are given in Table 1. It
should be emphasized that these results are from organisms photographed in crude
scrapes from the intestinal mucosa without control of medium viscosity or temperature.
In particular, since the temperature of the microscope stage was some 10-15 °C below
body temperature, the frequencies recorded are likely to average lower than in the gut.
As these simple slide preparations age, the flagellar beat of individual protozoans slows;
pone the less many organisms remain attached until the frequency falls below 2 Hz.

14 EXB 60
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Table 1 demonstrates a range of flagellar activity compatible with attachment withox!
implying a relationship between frequency and any other parameter beyond a tren
toward shorter wavelength and greater amplitude at lower frequencies. Except at low
frequencies synchrony of the motions of the two ventral flagella is complete. The
circularity of the waveform changes from near-helical in the detached organism to
near-plane as the cell and substrate are drawn closer together and as the beat slows.
The use of the simple numerical data in the equations that follow is further qualified
by the observation that the two-dimensional projection of the waveform is more nearly
an arc-line or meander than a true sine wave (Silvester & Holwill, 1972) and is non-
uniform (in most cases both the wavelength and the wave amplitude increase toward
the tip). Accordingly, the parameters of Table 1 are expressed as ‘means’ (mean wave-
length of a non-uniform wave is the length of the waveform divided by the number of
waves; mean amplitude the numerical average of individual peak amplitudes). A
measure of wavelength non-uniformity is given by the ratio of the largest and smallest
half-waves of one waveform.

THEORETICAL REALIZATION OF THE ATTACHMENT MODEL

Suction pressure

The model assumes that one effect of flagella beating within the ventral channel is to
generate a suction pressure behind the ventral disc. The two propositions of the model
are:

(1) That flow through the ventral channel leads hydrodynamically to a progressive
fall in fluid pressure.

(i) That at a point in the flow immediately behind the disc the achieved magnitude
of the suction pressure is such that, applied to the disc face, it will deform the surface
of the underlying cell to the observed degree.

Clearly, since the pressure far ahead of the channel flow may be assumed uniform
(the static pressure around the cell) and must have a single value at the potnt of con-
fluence of the two lateral channels, these two channels are hydrodynamically equiva-
lent and the same drop in pressure is experienced in each. The problem reduces to a
solution for changes in the flow parameters beneath the ventro-lateral flange on one
side of the disc. The very small dimensions of this channel and the low velocity of the
flow argue a situation of viscous flow with negligible inertial forces (a Reynolds num-
ber of the order 107¥). Previous authors have drawn on the predominance of viscous
forces in the motion of microstructures to derive equations describing the propulsion
of flagellated cells (Taylor, 1951; Holwill, 1966). In the present instance the low Rey-
nolds number means that the flow through the ventral channel is essentially laminar,
and that a satisfactory solution of the general dynamical equations for real fluids
(Navier-Stokes equations) may be found in a rearrangement of the familiar Hagen-
Poiseuille equation relating the viscous resistance to flow in a tube to the pressure
difference between its ends. For a tube section of length /, and radius r, the pressure
difference sustained by a flow of maximum (axial) velocity, u,,,, is

M:M’ (1)

rd

where p is, as usual, the absolute viscosity.
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Text-fig: 2. Giardia attached to a deformable substrate in diemetrical cross-section (4-4 of
Text-fig. 1). Ventro-lateral channel shown approximately semicircular with dimensions D and
nD = 2r; a, radius of suction disc; w,, substrate deformation at the disc centre.
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Text-fig. 3. Dependence of suction pressure (AP) on the ventro-lateral channel dimension 7,
for various channel lengths (I). A, ! = o-ynRp; B, | = 0'37Rp. C, | = o 17Rp. From equa-
tions (2) and (11), assuming helical flagellar waves of parameters; frequency, 20 Hz; wave-
length (A), 5 pm; amplitude (1), 075 pm; dfA, 0:06; m, 5. Rp is taken as 4 pm; /, as 2°s um
(see Pl 1, fig. 1).

But this is the expression for a tube of uniform circular cross-section whereas the
cross-section of the Giardia lateral channel is irregular (Pl 1, fig. 2). From electron-
micrographs the channel profile is more nearly semi-circular or elliptical; in particular
the horizontal dimension, D (Text-fig. 2), can exceed the vertical separation between
flange surface and substrate, 27, by a factor of 3. It is the smaller dimension that most
profoundly determines the viscous resistance developed, and is the more significant
parameter affecting the magnitude of the suction pressure. In the extreme, discounting
the effect of the sides of the channel, the situation compares to Poiseuille flow between
two flat plates with a solution similar in form to equation (1), but with the numerical
ponstant reduced in value from 4 to 2 (Duncan, Thom & Young, 1970). The flow

14-2



212 D. V. HoLBERTON

through the lateral channel is bracketed by these two cases and may be most close
modelled by assuming an elliptic cross-section having a ratio n of minor axis to major
axis, and using the general solution:

2 1
AP ~ 2(1 +n')aum_x,u, ‘ (2)
As a function of the achieved suction pressure, attachment of Giardia will be most
sensitive to the distance separating the ventro-lateral flange from the substrate surface,
since this appears as a very small dimension taken to the second power (Text-fig. 3).

In an earlier paper it was shown that the accumulating viscous resistance and the
positive velocity gradient both favour the development of a suction pressure. In fact
although the flow accelerates from zero velocity at infinity to a maximum value in the
Giardia channel, the component of the suction pressure arising from this source is
relatively small. It is given by Pai (1956) as about 2-2(p/2)(Q/nr®) for a well-rounded
tube entrance, where Q is the volumetric flow rate and p is the fluid density. Assigning
Ap to this correction, and if AP is the suction pressure calculated from the viscous
flow equation,

7ré
then Q= @_IAP’ (3)
Ap  2-2pr?
and AP~ 16l (4)

In Giardia r is less than 1 #m, leading to the conclusion that the velocity change effect
accounts for, at most, 0'02 %, of the final suction pressure.

Activity of the ventral flagella

For an organism in a medium of constant viscosity, the magnitude of the suction
pressure follows (equation 2) from a shape factor of the ventral channel, the ratio
(1 +n®)/r?, and the mean axial velocity, u ,,,, of the flow. The pressure will also vary
with the length of the channel, but in practice the simple relationship implied by
equation (2) alone is misleading since the achieved flow velocity is governed by the
resistance of motion, or drag, offered by the walls of the inert channel system, and it
will be shown below that the drag itself is a function of the channel length.

The flow velocity of a fluid movement around a sessile flagellated cell may be com-
pared to the translational velocity of a similar micro-organism propelled by flagella.

A number of authors have examined the forces on a flagellum in a free fluid and their
equations allow an estimate of fluid velocity from flagellar wave parameters. But this
strategy cannot be rigorously extended to Giardia where fluid motion is constrained
within a tube of size comparable to flagellar wavelength, and for which a complete
solution is unattainable. Nevertheless, in the absence of an experimental measurement,
flow velocity is calculated below from uncorrected equations recognizing that the
result is acceptable only to an order of magnitude. As the width of the ventro-caudal
channel approaches twice that of either lateral channel, it will be assumed that no
additional contraction of the flow is imposed at the junction, and that the law of con-
tinuity is satisfied by the same mean velocity in each branch of the channel system. A
relationship between the translational velocity of a flagellated micro-organism and thgg
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rlocity of propagation of flagellar waves has been derived by Gray & Hancock (1955)
or plane sinusoidal waves, and by Holwill & Burge (1963) for a helical sine wave.
Since, if the translation velocity is assumed uniform, no net force is resolved along the
axis of motion, the drag of an inert cell body moving at this velocity may be equated
with the component along this axis of the total viscous resistance offered by the medium
to the flagellar wave motion. By this means account has been taken of the extra
resistance to motion contributed by an inert spherical body leading to the following
expressions for translational velocity,

Umax _ 47%k?

Ve 1+7R2—(1+1/29%k%)3 [In(d[2Q) +1/2] (3Rg[/mA)’ (s)
for plane sine waves (Gray & Hancock, 1955, rearranged from equation (xxv)), and
Umax _ Uik (6)
V, iz (R [dzX) + 1/2] GRglm)

in the case of helical waves (Holwill & Burge, 1963, equation (13)). In these equations
V,, is the flagellar wave velocity, A and 7 are respectively the average wavelength and
amplitude of the wave, 2 = 27[A, Ry is the radius of the inert body, d the width of the
flagellar filament, and m is the number of wavelengths resolved in the direction of
propulsion.

The same approach can be extended to the Giardia channel flow replacing the expres-
sion for the viscous retarding force of a spherical body by an alternative term appro-
priate to the geometry of the channel system. For laminar flow in a circular pipe of
diameter 2r and length L, the drag of the inert wall is

D= r,wL, €)]
where w is the pipe perimeter and 7,, the mean frictional stress on the pipe wall in the
axial direction is proportional to the non-dimensional drag coefficient, and is given by
Duncan et al. (1970) (equation 7.68):

Tm = 44T (8)
The mean velocity % is half the axial velocity u ., (parabolic velocity profile); the
total drag may then be written

D = M#Lumax' (9)
(This last expression compares to D = 6muau, the Stokes expression for the drag of a
moving sphere of radius a.) For the general case of a tube of elliptic section, by the
same argument as justifies equation (2), it is more correct to write,
D= 2[(1 +nz)/n]-ﬂ:u‘Lum-x'

Thus for a flagellum beating within a tube of length L the appropriate equations
of fluid motion derived from equations (5) and (6) are respectively

Umax _ %ﬂakz
Vo  1+7R2—(1+1/27%k%)1 [In(d[2A)+ 1/2] [(1 +n2)L[nmA] (10)
d
" Umax _ Ui
Ve  1+2nR—(1+ PR [(d22) + 1]2] [(1 + n)) LjnmX]’ (x1)

Pilcre L is a convenient parameter representing the total inert surface contributing the
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Text-fig. 4. Showing the decline in fluid velocity expressed as the ratio up,,/V,, (dashed curve)
with increasing channel drag (as a function of channel length) and its effect on the achieved
suction pressure (B). Curve A4 plots the linear dependence of suction pressure on channel
length (I) expected from equation (2) for the hypothetical case of constant fluid velocity.
Flagellar wave parameters and channel parameters as for Text-fig. 3.

retarding force. Whereas in Giardia the effective suction pressure is generated within
the length of either lateral channel, this ‘skin friction’ is offered by the entire ventral
channel system. The dimension relevant to the drag equation will be some function of
component channel lengths and will depend on relative cross-section (the value of n in
each channel). The simplest case is for channels of similar ellipticity when L = 2l+ K,
if Ic is thelength of the hydrodynamically effective section of the ventro-caudal
channel. Taking representative values for the parameters of equation (11), we find
that though the greater drag force retards fluid velocity, a longer lateral channel will
enhance the final suction pressure. Over a sixfold range of values for /, approaching the
limit when [ is half the disc perimeter (! = mRp[6 — wR)), increasing channel drag
reduces the flow velocity by approximately half, none the less there is a threefold gain
in suction pressure (Text-fig. 4).

Effect of suction pressure on the gut epithelium

As can be seen from electron micrographs (Pl. 1, fig. 2), the effect of a negative pres-
sure beneath the ventral disc of an attached Giardia is to draw into a surface of curva-
ture the underlying gut cell surface, in much the same way as the cortices of various
free cells have been experimentally deformed in the cell elastimeter. Giardia will act as
a natural micro-elastimeter to the gut epithelium if this effect can be quantified. Con-
versely, a complete mathematical solution for the cell elastimeter that relates suction
pressure to the induced deformation will allow an independent estimate of the suction
pressure produced by Giardia if the elastic properties of the substrate are known or can
be reasonably assumed.
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The elastimeter technique was originally used by Mitchison & Swann (1954) to
measure the rigidity or ‘stiffness’ of the cortical plasm of unfertilized and cleaving sea-
urchin eggs. From the linear pressure/deformation curve, these authors inferred the
presence of a relatively thick (compared to the plasma membrane) cortex apparently
obeying Hooke’s law. Though this structure could be reasonably modelled by thin-
walled rubber spheres (leading by similarity analysis to a value of Young’s modulus for
the egg cortex) a rigorous theory of the elastimeter was found to be intractable when a
treatment of the complete cortex was attempted within the general theory of spherical
shells. But the principal stresses were identified as bending stresses (at the lip of the
elastimeter and arising from the decreasing radius of curvature of the enclosed portion
of the surface), rather than tangential membrane stresses in the cortex as a whole. In
these circumstances the local stresses can be satisfactorily modelled by regarding the
region of the cortex beneath the elastimeter tip as an independent plate and examining
the stresses resulting from a change of curvature under load. A similar approach would
seem to have been adopted by Selman & Waddington (1955) in calculating Young's
modulus for the newt egg cortex from a formula for the clamped end-plate of a
pressurized cylinder.

Turning to the gut cell, as part of a continuous epithelium each cell is effectively
anchored laterally to its neighbours, so that any deformation of the free surface by
Giardia is more evidently a local effect. The formal model is that of a thin circular
plate, clamped at its edges, and loaded normally and uniformly over its surface. In this
instance the load is taken to be the suction pressure of the Giardia disc; a positive
internal pressure of the gut cell acts in the same direction, but (if present) is without
measurable effect on the undisturbed cell cortex and can be ignored. The nature of the
significant stresses in such a plate depend very much on its thickness in relation to other
dimensions, in particular the ratio of the central deflexion at equilibrium (e;) to the
thickness of the plate (k) (Text-fig. 3; PL 1, fig. 2). For small deflexions it may be
assumed that the middle plane of the plate suffers deformation to a negligible degree
and the load may be approximately equated with the bending stresses of a relatively
rigid plate in the linear theory of ‘pure bending‘. Should the edges of the plate be
immovable in its plane (clamped) then additional tensile stresses (membrane stresses)
arise in counteraction to the load. For instances of small deflexion, membrane forces
may be practically disregarded, but for the large deflexions account must be taken of
strain in the mid-plane leading to non-linear equations and a more complicated solu-
tion. In these cases a given load is opposed at equilibrium partly by flexural rigidity and
partly by membrane action. In the extreme example of a very thin plate resistance to
bending may be discounted and the tangential stresses of membrane behaviour alone
may be regarded as carrying the load.

Whether or not the elementary (small deflexion) theory should be applied to a
specific problem can be judged from the percentage error introduced by neglecting the
non-linear terms of the more general equation. An approximate formula for large
deflexions given by Timoshenko & Woinowsky-Krieger (1959) may be written

ad 1w ©0
TR f[‘”#ﬁ’ (r2)

Dwhere g is the applied force, a the radius of the plate, E is Young’s modulus and 4 and
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B are numerical constants appropriate to the boundary conditions and material of thd
plate. A(w}/h?) is then the non-linear correction to allow for stretching of the mid-
plane. It is clear that as the ratio we/h decreases the correction becomes progressively
smaller. For instance, with 4 assigned values approaching unity, the correction is less
than 4 %, when the ratio is 1/5. On the other hand, when the central deflexion is of the
same order as plate thickness, use of the uncorrected linear theory would underestimate
by 509% the load appropriate to that deflexion. Micrographs of the deformed gut cell
suggest that the central deflexion may be greater than the thickness of the effective
cortex (wo/h lies between 1 and 1°4) and clearly the elementary theory cannot be
satisfactorily applied to deflexions of this order.

The numerical constant A4 takes a value that depends on the edge condition of the
plate, whether clamped, fixed, or free to move, and on Poisson’s ratio for the material
of the plate. This value is determined rigorously only by extended calculation and
ultimately as the approximation of an infinite series (Prescott, 1924). A shorter route is
provided by the ‘strain energy method’ (Timoshenko, 1937), in which the final shape
assumed by the deflected plate is assigned a reasonable equation and this defines an
equilibrium between the work of the applied load and the potential energy of the plate
(the combined strain energies of bending and of stretching the mid-plane). Assigning
suitable edge conditions gives alternative solutions of the relevant energy equations
and in this way the final expression for the central deflexion (w,) may be appropriately
modified. For a rigidly clamped plate in which the boundary conditions of zero radial
displacement at the centre and the edge of the plate are satisfied, Timoshenko (1937)
offers a solution computed for the value of Poisson’s ratio, » = o-3. Re-working these
equations (pages 431 et seq. in that reference) for v = o'5, a value considered reason-
able for biological tissues (Mitchison & Swann, 1954; Yoneda, 1964; Mela, 1967) we
derive.

gat 16 fw, wo\°]-
ﬁ‘s(x—vﬂ)[h“s”(h)]' (13)

An alternative solution for the clamped plate, but with boundary conditions that allow
movement of the edge in the radial direction, is given by Prescott (1924) in a more
general form with the value of v unassigned. This may be expressed

gt _16 o 6 ﬂ)"

ER T 31— & +7(h ‘ (x4)
It is assumed that these two theoretical extremes will bracket the real edge condition
of the area of gut cell cortex outlined by the Giardia ventral disc rim where free move-
ment of the ‘edge’ will depend on the tangential extensibility of the adjacent epithelial

surface.

CALCULATION OF THE RESULT
Suction pressure attached to glass

The reservations appended to the results of Table 1 make it clear that the status of
these data do not allow direct extrapolation to a physiological situation. In the gut a
faster wave velocity than has been measured might be expected at higher temperature.
Also, in the following calculations the viscosity of the medium is assumed as for water,
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Table 2. Calculation of Giardia suction pressure from flagellar

wave parameters
Propulsive Suction
velocity,®  pressure,}
Frequency Assumed Unax
(Hz) waveform (pm sec™?) (dynes cm™?)
18 Helical 58 124
18 Plane-sine 3-8 84
2'5 Helical 14 31
2'5 Plane-sine 10 22

* From equation (10) or (11); d = o'3 pm, m = 4.
+ From equation (2) with the following values assigned: n = o'5; 4 = 10~% poise, 1 = §7Rp, Rp =
412 pm, 7 = O'1 pm.
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Text-fig. 5. Load-deflexion curves for: A, a rigidly clamped circular plate (equation 13), and B,
a plate with radial edge movement (equation (14); ¥ = 0-5). Top and right-hand scales relate
deflexion (w,) of a gut-cell cortex of thickness (A) = 06 um to suction pressure (AP) within a
Giardia disc of radius 3-5 um.

and this is likely to be less than the real fluid viscosity close to the gut wall. On both
counts a value of suction pressure calculated from equation (2) using these values will
underestimate the range of suction pressure that might be achieved in situ. None the
less the flagellates attach to glass and subsequently detach when flagellar beating is
sufficiently slowed, and this more narrowly defined event may be satisfactorily analysed.
Table 2 summarizes the result of substituting into equation (2) representative values
of the channel parameters averaged from at least 20 electron micrographs, and alter-
native values of u#,, calculated from equations (10) and (11) for helical and plane
waves using the first and last lines of Table 1. The result fixes an upper limit on the
suction pressure permitted by present observations, and a lower limit compatible with
@aintained attachment to glass.



218 D. V. HoLBERTON

Suction pressure attached to the gut epithelium

Of the parameters appearing in the bent-plate formulae (13) and (14), @, w, and &
may be measured directly from micrographs (PI. 1, fig. 2). A problem of interpreta-
tion attaches to the measurement of the plate thickness, A, in deciding where lies the
boundary between the effective elastic cortex and the internal fluid cytoplasm of the
epithelial cell. For the present the cortex may be identified with a discrete layer
beneath the brush border, in electron micrographs marked by fine microfilaments.
The brush border itself, a highly corrugated sheet, offers minimal resistance to bending
and is not considered part of the effective plate. Text-fig. 5 plots the dependence of the
central deflexion on suction pressure for the two cases expressed in equations (13) and
(14), from likely values of the relevant parameters. A complete solution for suction
pressure rests with finding Young’s modulus for the gut cell cortex. Making the assump-
tion that this value for a ‘ cortical’ cell such as the epithelial cell compares with Young’s
modulus for another ‘cortical’ cell, the unfertilized sea-urchin egg (E = 1ot dynes
cm~2; Mitchison & Swann, 1954), a central deflexion of 0-7 #m would be produced by
a suction pressure of 122 dynes cm™2 in the case of a rigidly clamped cortical disc,
83 dynes cm~? allowing for radial edge movement. The largest central deflexion that
has been measured from micrographs is 0-76 um.

DISCUSSION

The foregoing analysis of the hydrodynamic model provides a good agreement
between the range of suction pressures developed by Giardia attaching to glass and
the least suction pressure that must be invoked to account for the local curvature of
the gut epithelium in electron micrographs. The following limitations of the result
argue caution in accepting this agreement at face value.

(1) In that the treatment of fluid flow around the flagella rests with the general
arguments of Gay and Hancock and ignores the complexity of channel flow, the
result for propulsive velocity must be approximate. Also, though both plane and helical
waves have been considered, in each case the flagellar waveform has been assumed
uniform. In reality the wavelength increases from base to tip by a factor of 2. The wave
amplitude may also be non-uniform, particularly at low frequency when the ratio of
extremes may be 1°6. In these cases the amplitude increases with wavelength as the
wave passes distally along the paired flagellar shafts.

(2) The gut cell cortex has been treated as an isolated plate for which the load
applied to its face is balanced only by stresses arising within its arbitrarily defined
perimeter.

(3) A value of Young’s modulus has been assumed for the gut cell cortex and may
not be justifiable.

On the first point, the errors due to non-uniformity of flagellar motion are
likely to be small in comparison to those introduced by the simplicity of the hydro-
dynamic argument. Holwill & Miles (1971) and Coakley & Holwill (1972) have calcu-
lated by protracted numerical integration the propulsive velocity of non-uniform plane
and three-dimensional flagellar waves for a number of representative cases, and com-
pared the results over a range of 7k values with the approximate solution provided heli
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e substitution of mean wave parameters into the formulae of Gray & Hancock
1955) and Holwill & Burge (1963). The error incurred through the use of the approxi-
mate formulae is significant only if the scale of the non-uniformity is greater than a
factor of 2, becomes increasingly so as the value of 7k increases, but is reduced con-
siderably by the presence of a large inert body. The greatest error from this source in
the stated result of Giardia (Table 2) will be found in the calculations at slower
frequencies (nk > 1-5), which are in any case uncertainly related to the behaviour of
flagellates in situ.

The bent plate equations may be tested against a known experimental result, the
deformation of the sea-urchin egg in an elastimeter (Mitchison & Swann, 1954). If
account is taken of increased plate area as more egg surface is recruited into the elasti-
meter tip under greater suction pressure, the equations give linear pressure-deforma-
tion curves that bracket the experimental points (Holberton (1973), unpublished
calculations). The fit is not altogether surprising since Mitchison and Swann con-
clude that tangential tension in the complete cortex is much less significant than local
bending stresses at the elastimeter tip. In the first instance this exercise justifies the
bent plate analysis, and secondly confirms the value of Young’s modulus derived by
these authors from model experiments. Recently the validity of results from elastimeter
experiments has been challenged by Mela (1967), who suggests 107 as a more likely
value of Young's modulus, and one that accords with results from other tissue
sources, such as spermatozoa tails, collagen and erythrocytes, that generally fall within
the range 107 to 10%. The basis of Mela’s determination of the elastic modulus was the
swelling behaviour of sea-urchin eggs under osmotic stress, and the discrepancy
between the two values is probably inherent in the different experimental approaches.
The elastimeter measures local cortical bending whereas the principal stress of a swollen
egg is circumferential tension. If in the latter case once the membrane has been un-
folded by initial swelling (the ‘elastic domain’ of Mela) resistance is offered to a large
extent by the membrane itself and not the cortex, then the result might be expected to
agree with a ‘pure membrane’ measurement such as elastimetry of the erythrocyte
surface (Rand, 1964). A distinction may here need to be drawn between ‘cortical’
surfaces and ‘membrane’ surfaces. Cells such as the sea-urchin egg or the newt egg
(Selman & Waddington, 1955) which give a modulus of order 10* to 108 by elastimetry
are also identified by a thick submembrane cortex (Mitchison, 1956) within which
actin-like filaments assemble locally during cleavage (Tilney & Marsland, 1969; Perry,
John & Thomas, 1971). The discrete filament-containing periphery of the intestinal
epithelial cell suggests that it might reasonably be allied with this group.

The hydrodynamic model raises a point of biological significance. Assuming a
reasonably constant fluid velocity from sustained flagellar beating, suction pressure is
critically dependent on the shape adopted by the lateral flange, both in the absolute
length channelling the flow, and, more importantly, in the vertical separation of
the flange arch from the substrate (Text-fig. 3). For example, should the flange be
raised by o5 #m (from a resting separation of o-2 #m) suction pressure would fall from
120 to less than 10 dynes cm—2, an effect that compares with slowing the rate of
beating from 20 to 1-75 Hz. Ultimately detachment from a surface might be accom-
plished by this means. The control of flange shape has previously been attributed to a
‘ paramyosin-like’ marginal plate within its cytoplasm (Friend, 1966). The model
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advanced here predicts that for part of its length the flange develops an arched proﬁ!
and maintains this shape against pressure collapse over extended periods. Thoug
detailed evidence is lacking to confirm the identity of the flange plate, these properties
would be manifest in a contractile system embodying a ‘catch’ mechanism. The
extent to which contractile proteins familiar from metazoan sources are anticipated at
the protozoan level is indicated by some recent discussions of protozoan contractile
systems (Pollard, Shelton, Weihing & Korn, 1970; Holberton & Preston, 1970;
Nachmias, 1972). Though conservative evolution of actomyosin systems is implied by
hybrid actomyosins formed from plasmodial actin and rabbit myosin (Nachmias,
Huxley & Kessler, 1970), there is also evidence of a contractile system peculiar to
protozoa in the elastic recoil mechanism of peritrich spasmonemes (Weiss-Fogh &
Amos, 1972).

SUMMARY

1. The attachment of Giardia trophozoites can be modelled by viscous-flow equa-
tions demonstrating that a suction pressure arises from the viscous stress of a fluid
flow led beneath the cell by flagellar activity.

2. Changing fluid velocity is less significant in generating suction.

3. Over the range of flagellar wave parameters observed from cells attached to
glass, suction pressure may reach 10? dynes cm—2.

4. Expressions for the bending of a thick disc under normal load allow an estimate
of suction pressure in situ from its deforming effect on the gut-cell cortex. Allowing for
alternative boundary states, calculations suggest that suction pressures close to 10?
dynes cm~2 account for the deformations measured from electron micrographs.

5. The shape assumed by a ventro-lateral flange determines the magnitude of the
developed suction pressure and may constitute a control mechanism of attachment and
detachment.

I would like to thank Dr R. B. Ginder for the critical reading of the manuscript.
This work was supported by a grant from the Science Research Council.
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EXPLANATION OF PLATE

Fig. 1. Phase-contrast micrographs of Giardia trophozoites attached to glass. The synchronous wave
form of the two ventral flagella within the ventro-caudal channel is evident. Flagellar frequency: (a)
12 Hz, (b) 7 Hz.

Fig. 2. Electron micrograph of a trophozoite in situ on the mouse gut wall. The section is taken obliquely
and anterior to the plane of Text-fig. 2; the deflexion of the epithelium (w) is not the true central
deflexion. On one side the protozoan shares a ventro-lateral channel with a neighbouring organism
(arrow). The cortical plasm defines a plate of thickness, k.





