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INTRODUCTION

The terrestrial isopods make an interesting parallel to insects in their adaptations
to life on land (cf. Edney, 1968). In general, isopods have a poorer resistance to
desiccation, but their behavioural reactions to external humidity contribute strongly
to their success in terrestrial conditions, as reviewed by Edney (1968) and Lindqvist
(1968). A thorough study of the permeability characteristics of the isopod cuticle is
that by Bursell (1955), who dealt with Oniscus asellus. Since the effect of environmental
humidities on terrestrial isopods is more pronounced than on most insects, we could
expect that the water content and water activity of their cuticle also would reflect this
difference. The insects Locusta and Periplaneta, both of which are relatively hardy in
dry conditions, have a reduced water activity in the cuticle as compared to that of their
blood (Winston, 1967; Winston & Beament, 1969); different environmental humidities
do not affect the cuticular water content and only slightly the cuticular water activity
in these insects.

The present paper aims at assessing the free water content and the osmotic charac-
teristics of the cuticle of several species of terrestrial isopods, in the hope that it may
throw some light on the mode and the site of water regulation in the cuticle.

MATERIAL AND METHODS

Porcellio scaber Latr. and Cylisticus convexus De Geer were collected from the
south-western coast of Finland and Armadillidium vulgare Latr. and Oniscus asellus L.
from near Visby, Sweden. In the laboratory they were reared in small plastic containers
provided with paper towelling which was moistened at times to keep the relative
humidity in the containers in excess of 90%. The room temperature was thermo-
statically controlled at about 24 °C and the experiments were conducted at the same
temperature. The animals were fed on fresh carrot, but before each experiment they
were starved for 24 h. Only adult intermoult animals of both sexes were used; no
difference was observed between the sexes in the cuticular properties studied.

As the water contents of the cuticles from different tergites of the same animal
differed slightly but irregularly, the samples were taken from the third tergite only,
and in the following way. The animal was decapitated and the third thoracic shield
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was excised as rapidly as possible. The cuticle was wiped with a piece of filter pape'
to remove any remnants of tissue, and the lateral edges of the tergite were trimmed
to a rectangle weighing 1-1*5 m § - This was wrapped in aluminium foil and weighed
on a Cahn Electrobalance to the nearest o*ooi mg. The aluminium foils with the
cuticle inside were dried in vacua over CaCl2 at room temperature for 24 h and re-
weighed to obtain the free water content. The dissection of the animals was conducted
in a chamber having a relative humidity of about 98 %; the balance was situated in
the same chamber. The chamber was provided with a glass window and two holes
through which the operator could push his hands to work inside.

The osmotic equilibrium point of the cuticles was determined by wrapping other
samples in cups of aluminium foil and weighing them; after this the cups were opened
and were left hanging in small glass jars containing different NaCl solutions to control
humidity. Humidities were calculated according to the tables of Washburn (1928).
Then the jars were put into large well-insulated boxes to minimize and smooth out
any changes in temperature. Any errors resulting from possible precipitation were
corrected by the use of empty control cups. After 3 days the cups were weighed again
and dried for 24 h to obtain the free water content. Before the cuticles were excised
for equilibration, the animals were dried over silica gel for 30 min to remove the free
water in the cuticle and to reduce variability.

The experiments reported here were conducted during the period from December
to March. Blood osmotic pressures were determined by the method of Gross as
described in a previous paper (Lindqvist, 1970).

RESULTS

Both Armadillidium vulgare and Porcellio scaber are relatively hardy in terms of
water loss under terrestrial conditions, and for this reason their cuticular water content
was measured first. In both species the free water content of the cuticle remained
rather stable during desiccation of live animals for various times (Fig. 1). The mean
water content was 54-0 ±078% (N = 70) for P. scaber and 52*7 ± i*n% (N = 28)
for A. vulgare. The difference between the species is not significant. There was no
trend as regards the desiccation time, nor did the body weight affect the cuticular
water content. The mean weight of P. scaber was 51-1 mg (range 34-1-77-6 mg) and
that of A. vulgare 70-0 mg (range 40-3-109*7 mg).

In those animals which were dehydrated for up to 7 h the cuticular water content
was not significantly changed, even when the water loss from the body had amounted
to about 25 % of the initial body weight. The animals which died, however, after
having lost 30 % or more of body weight had cuticular water contents distinctly lower
than those shown above; values from about 40% to as low as 25% were obtained
depending upon the length of time the animals had been dead. This difference between
living and dead animals would indicate that in dead animals water was being lost from
the cuticle faster than it could enter from the blood, and that an active mechanism
therefore maintains the high water content of the cuticle in living animals.

In these tests P. scaber showed a slight tendency for lower water contents in the
cuticle after some desiccation, as compared to non-desiccated animals. This was tested
again in a further experiment at another time; there was a significant drop from
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Fig. 1. The water content of the cuticle of A. vulgare (open circles) and of P. scaber (closed
circles) after desiccation of intact animals for various times over silica gel. The unbroken line
is the regression curve for A. vulgare, the broken one for P. scaber.
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Fig. 2. The change in weight in percentage of the excised cuticle after equilibration at various
humidities provided by different molal concentrations of NaCI. A, P. scaber; B, A. vulgare;
C, O. asellus; D, C. convexus. Vertical bars indicate the standard errors of means of the number
of animals shown by the adjacent figures.
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56-8 ± i-66% to 50-4+ I - 6 I % after 30 min. dehydration (N = 7 in both cases). Irl
A. vulgare there was no change in the cuticular water content after this short
desiccation period.

For measurements of the water activity of the excised cuticle, two less hardy species,
Oniscus asellus and Cylisticus convexus, were included. Both have been found to have
considerably higher rates of loss than either P. scaber or A. vulgare (cf. Warburg, 1965,
and unpublished data). The water activity of cuticle in living, normal animals was in
equilibrium with 200-270 mM/1 NaCl (Fig. 2, Table 1). This is the concentration of
salt over which the excised cuticle neither gained nor lost weight, i.e. it had the same
vapour pressure as the solution. (The values are estimations of the point at which a
plot crosses the line for no gain in weight, rather than direct measurements.) In con-
trast, the freezing-point determinations showed the blood pressures to be higher,
averaging between 290 and 330 mM-NaCl (equiv.) per litre for the four species
(Table 1). (The values for blood osmotic pressure of P. scaber and O. asellus are
approximations from an earlier study (Lindqvist, 1970), while measurements of A.
vulgare and C. convexus are 331-2 and 319-6 mM/1 NaCl respectively (N = 8 in both
cases) under similar conditions.) Thus the water activity of the cuticle is higher than
that of the blood.

Table 1. The osmotic relationship between excised cuticle and blood
in four species of terrestrial isopods

(The equilibrium points are estimations of the points at which plot (Fig. 2) crossed the line for

Armadillidium vulgare
Porcellio scaber
Oniscus asellus
Cylisticus convexus

no weight gain or loss.)
Equilibrium
point of the

excised
cuticle

(mM/1 NaCl)

270
213
2 0 2

260

Osmotic
pressure of
the blood

(equivalent to
mM/1 NaCl)

c 33°
c. 33°
c. 290
c. 320

Difference in
osmotic pressure
between cuticle

and blood
in atm.

- i - 5
- 2 8
— 2 1

- i - 5

Water content of
the excised cuticle
after equilibration

50-8 ±0-85% (iV =
59-2 ± 1 os % (AT =
6io±3-29% (N =
496 ±1-25% (iV =

36)
36)
1 0 )

36)

The free water contents of cuticles determined after equilibration (Table 1) were
approximately 59% in P. scaber, 51 % in A. vulgare, 61 % in O. asellus, and 50% in
C. convexus. These values did not differ significantly from those obtained at the same
time from non-desiccated (and non-equilibrated) animals. In all four species, however,
there is a statistically significant (P < 0-05) negative correlation between the water
content and the osmotic equilibrium point of the cuticle (r = -0-979; Table 1). It
can be seen that the higher the water content of the cuticle, the higher the water
activity.

The measurements of cuticular water described here were conducted from December
1969 till late March 1970. There appeared to be a definite pattern in the water contents;
the values obtained in December were all higher (especially in non-desiccated animals)
than those obtained in the spring for both P. scaber and A. vulgare. The environmental
conditions were kept as stable as possible during this period and they probably did
not contribute to this gradual change. It is conceivable that the cuticular water is con-
trolled periodically, linked with seasons or the breeding cycle. Gupta (1963) reported
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that both P. scaber and O. asellus show an annual rhythm in the intensity of their
humidity preference in a humidity chamber; whether this behavioural preference
shows any relation to the control of cuticular water remains to be seen.

DISCUSSION

The transpiration rates of terrestrial isopods show a characteristic curve in dry air:
at first the rate of water loss is high and only after some time does it reach a steady
level (Edney, 1951; Bursell, 1955; Lindqvist, 1968). In Armadillidium vulgar e, for
instance, the initial rate 6o/tg/mm2/h was about six times higher than the plateau
level (about io/tg/mm2/h) (Lindqvist, 1968), which was reached only after 120-
150 min desiccation. This is reflected in no way in the cuticular water content, indi-
cating a strong degree of regulation of water levels in the face of high evaporation
rates. Porcellio scaber showed nearly as good regulation, but there was always a differ-
ence of 1-5% in cuticular water content between desiccated and non-desiccated
specimens.

The water content and the water activity of the cuticle are not necessarily comparable
(Winston & Beament, 1969), but in these isopods they appear to be so. It is apparent
in Table 1 that when the water content is high the water activity is also high (the
equilibrium point is low), and vice versa. Thus, such a relationship would be expected
to hold in other situations and, in general, when we speak of changes in one, it will
mean changes in the same direction in the other.

The fact that the free water content of the cuticle remained almost unchanged during
desiccation most probably means that there are some mechanisms, working in the
living animal only, that drive water into the cuticle at rates which make up the evapora-
tive losses. This is the more remarkable as the animal may lose 25 % of its body weight
without a significant drop in the free water content of the cuticle. As the body water
content of normal P. scaber is between 65 and 72% (unpublished data), such losses
could mean an increase of up to 45 % in osmotic pressure of body fluids, provided that
water levels were reduced by the same amount in all compartments. To explain the
high sustained water activity in the cuticle, there may exist at least the following three
alternatives. First, there may be special mechanisms in the epidermis or in the cuticle
itself which tend to maintain the stability of the cuticular water activity (though not
in osmotic equilibrium with the haemolymph) in spite of osmotic changes. Winston &
Beament (1969) showed this pattern in Periplaneta americana and Locusta migratoria.
Second, the blood osmotic pressure may not appreciably change with desiccation, but
the blood volume would instead decrease with concomitant withdrawl of solutes from
the haemolymph. Hence, the blood bathing the cuticle would be osmotically stable,
reducing the energy needed to maintain the differential between the haemolymph and
the cuticle. Quite recently Horowitz (1970) reports that during desiccation of P. scaber
its blood osmotic values remained relatively constant for some period of time; this
result definitely refers to this kind of regulation. Among the insects some cases are
known where the blood osmotic pressure is regulated against the effects of hydration
and dehydration (Edney, 1966; Djajakusumah & Miles, 1966; Wall, 1970), and the
best example of such regulation known is in Leucophaea maderae where the water
content of the cuticle (Winston & Hoffmeier, 1968) and the blood osmotic pressure
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(Laird, 1970) are unaffected by long periods of desiccation and starvation. The
potamonid crab Sudanonautes africanus shows increased concentrations of several
plasma ions except sodium at mild desiccation (Lutz, 1969). It may be of some interest
to note here that the fresh-water isopod Asellus aquaticus has about 20-30% of its
total body sodium outside the haemolymph and most of it is concentrated in the
Zenker's organ (Lockwood, 1959). The role of this sodium is not known, but it might
be used in regulating the blood sodium levels. A third alternative may be that the
blood osmotic pressures change somewhat according to hydration and dehydration,
but all tissues are regulated osmotically and kept stable and the cuticle is just another
tissue. However, this is not very probable, as Horowitz (1970) found that in P. scaber
muscles at least lose water into the haemolymph during desiccation and some water
may also be drawn in from the gut. Work has been started to investigate this problem
more closely.

Further evidence for an active cuticular regulatory principle is the drop in water
content at death. This would indicate that a barrier, possibly at the base of the cuticle,
breaks down when the animal dies, allowing the rest of the cuticle to equilibrate with
the blood. More water would be drawn out of the cuticle if the blood osmotic pressure
also rises at this time. Thus these animals somehow possess a mechanism akin to the
'water pump' of some insects (Winston, 1967; Winston & Beament, 1969) which
maintains cuticular water content and activity in the face of changing rates of water loss.

The adaptive advantage to keeping the water activity above that of blood even during
desiccation is not clear. The few insects in which a 'pump' is known (Winston, 1967;
Winston & Beament, 1969) show just the opposite effect; water activity is kept lower
in the cuticle than in the blood, a condition which would seem to aid in the reduction
of transpiration. In the terrestrial isopods the relatively poor waterproofing of the
cuticle allows rapid water loss and, apparently, water must be 'pumped' in to maintain
the level in the cuticle. If it were not, the cuticle would become dry and brittle, an
obvious disadvantage, and the many sense organs of the cuticle possibly could not
function properly in such a milieu. Also, a high cuticular water content may be advan-
tageous in view of the fact that the terrestrial isopods seem to excrete most of their
nitrogen as ammonia in gaseous form through body surfaces (Wieser & Schweizer,
1970).

SUMMARY

1. The water content of the cuticle of both desiccated and non-desiccated terrestrial
isopods Porcellio scaber and Armadillidium vulgare was measured. The animals were
desiccated for various times (up to 3 h) over silica gel and the mean water content of
the cuticle was 54-0+ 0-78% for P. scaber and 52-7+ i - n % for A. vulgare. There
was no trend as regards the desiccation time, nor did the body weight affect the water
content.

2. The water content of the cuticle remained virtually unchanged as long as the
animal was alive in the desiccator. It dropped significantly after the animal had died
after having lost some 30 % of its body weight.

3. The cuticular water content of non-desiccated P. scaber tended to be slightly
higher than that of desiccated ones. In A. vulgare no significant difference was observed
between non-desiccated and desiccated specimens.
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4. The water activity of the excised cuticle of the above two species and of Oniscus
asellus and Cylisticus convexus was above that of the haemolymph and therefore not
in osmotic equilibrium with it. The osmotic equilibrium points were below the osmotic
pressures of the blood; the difference amounted from 1*5 to 2-8 atm. in different species.

5. The difference in water activity between blood and cuticle, the maintenance of
water content with desiccation, and the drop in water level at death, all indicate the
presence of an active mechanism regulating the cuticular water in terrestrial isopods.

This study was aided by grants from the National Research Council for Sciences of
Finland to one of us (O.V.L.).
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