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INTRODUCTION

Although aerodynamicists have used wind tunnels for over half a century, biologists
have only recently studied the aerodynamics and physiology of live birds flying in
tunnels (see Tucker & Parrott, 1970; Pennycuick, 1968; Greenewalt, 1960, for aero-
dynamic work; and Tucker, 1968, 1966; Eliassen, 1963, for physiological studies).
The wind tunnel provides a controlled aerial environment that allows one to obtain
aerodynamic data of known accuracy. In addition, the aerodynamic and gravitational
forces of gliding can be simulated in a tunnel without the movement of a bird relative
to an observer. Under these conditions measurement of glide angle (angle between
horizontal and a bird's glide path relative to air) is facilitated and a gliding bird can be
studied over a selected range of air speeds and glide angles.

Prior to wind tunnel studies on live birds, aerodynamic data for gliding birds were
obtained either from wind tunnel tests on frozen, stuffed or model birds (see e.g.
Nayler & Simmons, 1921; Feldmann, 1944), or from field studies on naturally gliding
birds (see e.g. Raspet, 1950; Pennycuick, i960). Models may not simulate the surface
features of a live bird and cannot assume the various configurations of a flying bird.
Measurement of a bird's glide angle under natural conditions is difficult because an
observer on the ground must know both the motion of the bird relative to the ground
and the motion of the air relative to ground to determine glide angle.

I have circumvented these difficulties by training a black vulture to fly freely in
the working section of a wind tunnel. The black vulture is a common cathartid of the
south-eastern United States, where it can often be seen soaring for many minutes
on motionless wings.

METHODS AND MATERIALS

Calculations and definitions

This paper is concerned with the aerodynamics of equilibrium gliding, i.e. non-
flapping flight without acceleration. In practice this meant that the vulture was moving
less than o-oi m/s relative to the wind tunnel. In equilibrium gliding the lift (L)
and drag (D) forces, which are respectively perpendicular and parallel to the glide
path, are balanced by components of the weight of the aircraft (see Jones, 1950, for
a discussion of gliding flight). The following relations were used in this study

DT = Wsind, (1)

L = Wcosd, (2)

LID = cot 6, (3)
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where W is the weight, DT is total drag and 6 is the glide angle. All units are in the
mks system. For angles less than 8°, cos 6 is within 1 % of unity so W approximates
toL.

For equilibrium gliding in still air LjD corresponds to the ratio of horizontal dis-
tance travelled to altitude lost per unit time. Sinking speed is related to glide angle
and air speed by the equation

sinking speed = V sin 6, (4)

where V is air speed. For angles less than io°, sin 6 is nearly equal to tan 6 so that

sinking speed = J-J^. (5)

Lift coefficients (CL) were calculated from the standard equation

where p is air density (1*17 kg/m3 in this study) and S is wing area, denned as the
plane projected area of both wings, including the area intercepted by the body. Inter-
cepted area is that part of the body bounded by lines joining the points where the
leading and trailing edges of the wings contact the body. I determined wing areas
from enlarged photographs with a planimeter. Right and left areas were measured
separately and added to intercepted area to obtain total wing area. A scale factor was
determined by measuring the width of a wing's base on each picture. I estimate that
wing areas are accurate to 5%.

The total drag of an aircraft is composed of induced drag and parasite drag. Induced
drag (£)() was calculated from the equation

L2

D* = ^

where b is wing span (tip to tip distance) and M2 is the Munk span factor. For an
elliptical distribution of lift across the span, the induced drag is a minimum and M2

is 1. For non-elliptical distributions the span factor is less than 1. Most wings have a
M2 between 0-9 and 0-95 (von Mises, 1959) and I used a value of 0-9 in this study.

Parasite drag (Dp), which is caused by skin friction and pressure drag, is the part
of total drag that is not associated with lift production. I obtained parasite drag by
subtracting the calculated induced drag from the measured total drag. Parasite drag
coefficients (Cnp) were calculated from the equation

C l (8)

where Sw is wetted area (total surface area of an aircraft).
I calculated body area by assuming that the vulture consisted of a cylinder (head

and neck), a frustrum (thoracic region) and a cone (abdomen). Projected wing area
was multiplied by 2-05 (this factor accounted for upper and lower surfaces and curva-
ture of the wings) to obtain wetted wing area. Total wetted area was then calculated
by adding wetted wing area to body and tail area and subtracting twice the intercepted
area. Body area is probably accurate to only 20%, but because body area is about 10%
of the total wetted area the latter is accurate to better than 10%.
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Values of Reynolds number (Re) were calculated from the formula

where (i is the dynamic viscosity of air and c is the chord of the wings. For a non-
rectangular wing the chord varies along the span and thus the average chord {Sjb)
was used to calculate Re. The value of pjfi for this study was 6-38 x 104. Re varied
from 1-5 x ioB to 2-6 x io5 over the range of air speeds encountered.

Wind tunnel and calibration
The wind tunnel used for this study was of the open circuit, closed jet design and

could be tilted from o° to 7J0 down from horizontal about a central pivot. The working
section was I-I m high by 1*4 m wide by 2-3 m long and had a wire screen (0-013 m

mesh) at the rear to prevent the bird from drifting close to the fan. The front of the
working section opened without screen or obstruction into the entrance cone. A
variable speed motor provided air speeds up to 16*8 m/s.

I calibrated the working section for air speed distribution, direction of air flow and
turbulence (see Tucker & Parrott, 1970, for a description of the calibration techniques).

Air speed, determined in the region where the bird usually flew, varied ± 5 %
from the mean.

Direction of air flow varied about i° across the working section. The direction of
air flow with respect to the working section was independent of tunnel tilt and air
speed. Mean angles, accurate to \°, were used for calculations. Variation in direction
of air flow resulted in drag measurements accurate to 11 %.

Mean % turbulence was 0-4 %, which corresponds to a turbulence factor of approxi-
mately i*3 (Pope & Harper, 1966).

Experimental animal and training procedure

The black vulture was purchased from an animal dealer and its weight during the
study was 17-5 newtons±2% (mass = 179 kg, g = 9-8 m/s2). The wing span to
tunnel width ratio was 0-97 at maximum LjD.

A perch that could be raised and lowered (when lowered, the perch did not interfere
with air flow) was mounted in the front of the working section. A capacitance-discharge
shocking device was employed to give the bird mild shocks. A wire (1-5 x io"3 m in
diameter and 2-2 m long) was attached to each leg and a shock could be given when-
ever necessary. These wires also prevented the bird from entering the entrance cone.

The training procedure consisted of reward and punishment. Initially, the bird
was placed on the perch and given a shock if it jumped from the perch to the tunnel
floor. After a few shocks the bird learned to stay on the perch and rarely jumped to
the floor. At this stage of the training I turned on the motor and lowered the perch.
If the bird remained in the air for a few seconds no shock was given and the perch was
raised. The bird was then rewarded by being allowed to sit on the perch for 15-30 s
before the next flight. If the bird landed, instead of remaining in the air, a shock was
given and the bird was placed back on the perch. By giving shocks whenever the bird
landed and by gradually lengthening the time that the perch was lowered, the vulture
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was trained to glide for up to 30 min at a time. The entire training procedure took
about 4 weeks with sessions at least every other day.

I was able to train the vulture to glide in the desired part of the working section by
giving mild correctional shocks whenever the bird drifted back into the screen or
bumped into the ceiling or side walls. Characteristically, the bird would drift back
when the perch was lowered and then glide to the front portion of the section. After
remaining nearly motionless there for 10-30 s, the vulture would slowly drift back
about 1 m and then glide forward again.

At air speeds less than 13-9 m/s and glide angles greater than 6°, the vulture
usually held its feet down perpendicular to the air flow. The feet were progressively
retracted with increasing air speed and/or decreasing angle.

Experimental procedure

I photographed the vulture when it was in the region where the calibrations had
been made and when neither of its wing tips was touching the side walls. Photographs
were taken from above the working section through the Plexiglass ceiling with a
motor-driven 35 mm camera that tilted with the tunnel. An electronic flash illuminated
the bird from above.

Glide angle and air speed were systematically varied, and about six pictures were
obtained for each combination of speed and angle. The normal procedure was as
follows. The bird was flown for a few minutes until its flight pattern was consistent
(the vulture usually flapped vigorously and was erratic at the beginning of each session).
Then the tunnel was tilted down to 7^° and the tunnel speed set. After pictures were
taken, the tunnel was tilted back £° and the bird was photographed at the new angle.
This procedure was continued until an angle (minimum glide angle, 9M) was found
below which the bird would no longer maintain its position without flapping. I then
tilted the tunnel to 7J0 again and selected a higher speed.

Photographs were obtained over a range of air speeds and glide angles from 9-9 to
16-8 m/s and from 4-8° to 7-9°, respectively. Below 9*9 m/s the vulture would not
remain airborne without flapping.

Corrections: drag due to wires

The drag of the training wires was measured and found to be about 10% of the
total drag of the bird at maximum LjD (the wires were twisted together except for
the last 0-15 m.). Drag was measured by attaching a fine thread to the wires and
running the thread over a pulley mounted in the region where the bird flew. The
thread passed through a hole in the floor of the working section and was tied to a
weight (mass = m) on a top-loading Mettler balance. Tension (T) in the wires was
determined by the equation

T = g(m-R), (10)

where R is the balance reading (in kg) at various air speeds. At each air speed I used
a protractor to measure the angle (<p) between the direction of air flow and the wires
(tunnel tilt was 6°). Drag of the wires, equal to T cos <f>, was subtracted from the total
drag of the vulture. Corrections ranged from 0-14 N at the lowest speed to 0-19 N
at the highest.
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Corrections: tunnel interference effects

Wind tunnel boundaries cause the flow pattern around an object in a tunnel to
differ from the pattern in free air and measurements may have to be corrected for this
boundary interference (Pope & Harper, 1966).

The wake and solid blockage correction for lift and drag, horizontal buoyancy
correction for drag and streamline curvature correction for lift were each about 1 %
or less and I did not correct data for these effects.

The downwash correction to drag was 29 % at the lowest speed and diminished to
8% at the highest speed. Drag values were corrected according to the equation

where DM is the measured drag and C is the cross-sectional area of the working section
(1-5 m*).
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Fig. 1. Wing area of the vulture at different wing spans. The equation for the linear least-
squares regression line is S = 0-2556 — 0-013 (N = 142, standard error of estimate is 0-0062).

RESULTS

Wing span and wing area were linearly related (Fig. 1). Air speed and glide angle
influenced wing area (Fig. 2). The variation of wing area with air speed depended on
glide angle. At a given air speed wing area decreased as glide angle increased.

EXB 33



368 G. C. PARROTT

Lift coefficients calculated for the vulture ranged from 0-3 to I - I . At a particular
air speed, CL was largest for a glide angle of 7-9° (Fig. 3). Maximum CL for the vulture
is smaller than that calculated for the falcon (Tucker & Parrott, 1970) and for the
pigeon (Pennycuick, 1968), which have maximum CL'& of i-6and 1-3, respectively.
Raspet (1950) calculated a maximum CL of 1-57 for the black vulture.

0-34 -

0-32 -

0-30 -

0-28 -

0-26 -

95 10-5 12 5
Air speed (m/s)

14-5 16-5

Fig. 2. Mean wing area of the vulture at various air speeds and glide angles. Wing area at
minimum glide angles (except at 9-9 m/s) is given by the following symbols: (-• ), wing area
extrapolated from curve below point; (4 ), wing area measured. The minimum glide angles
at which these areas were observed are given in Fig. 4. Mean sample size for each point (except
-• ) is 6. Mean standard deviation is 0-008.

Table i. Summary of basic data for the vulture at minimum glide angles

Air speed
(m/s)

9 9
1 1 3
12-5

13-9
15-4
1 6 8

Wing area
(m')

0-306
0-311
0-323
0-335
0-326
0336

Wing span
(m)

1 -25
1-27
1-32
1-37
i-33
i-37

Wetted area*
(m«)

0-71
0-72
0-74
0-77
o-7s
0 7 7

Total drag
(N)

1 9 4

i-68
I-6I

i -5 i
1-65
1 7 9

• Wetted area (5jr) was calculated by adding wetted wing area (a-os<S) to wetted tail and body areas
(0-050 m1 and 0-087 m ' i respectively) and subtracting twice the intercepted area (0-055 m*)-
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Minimum glide angle for the vulture was about 4-9° from 11 to 14.n1/8. At air
speeds lower and higher than this range, 0M increased (Fig. 4). Basic data at 6M are
summarized in Table 1.

The vulture's sinking speed varied with air speed (Fig. 5). LjD for an aircraft in
Fig. 5 can be found at any air speed by use of equation (5). The vulture had a maximum
L/Z) of u-6 at 13-9 m/s.

Parasite drag coefficients for the vulture at different Re ranged from 0-0113 t 0

0*0179 (Fig. 6). K values (as used in Tucker & Parrott, 1970) ranged from 1-9 to 2-8.
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Fig. 3. Lift coefficients for the vulture at various air speeds. At a given air speed, lift co-
efficient was largest at 7-9° (upper boundary of hatched area), smallest at minimum glide angle
(lower boundary) and intermediate at angles between 7-9° and minimum.

DISCUSSION

Comparison of wind tunnel data with Raspet's data

Raspet (1950) studied the gliding performance of black vultures in free air. He
followed vultures with a sailplane and recorded their position and air speed relative
to the plane. From this information he calculated the difference in sinking speed
between the bird and plane. The plane's sinking speed at various air speeds in still
air was known and thus the vulture's sinking speed at different air speeds could be
computed.

24-2
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Raspet reported maximum L/D's of 23 and 21, respectively, for soaring and gliding
vultures. The former had fully extended wings and were gaining altitude while
circling. The latter had flexed wings and were descending along a fairly straight path.
The vulture I studied in the tunnel had a continuously variable wing shape rather
than the dichotomy described by Raspet.

Why is the maximum L/D (11 -6) of the vulture in the wind tunnel so inferior to the
values Raspet computed for vultures in free air ? An analysis of parasite drag reveals
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Fig. 4. Minimum glide angle (Ox) of the vulture at different air speeds. The curve is drawn
through the smallest angle observed at each air speed.

that Raspet's vultures, at most values of Re, apparently have a C ^ less than, or similar
to, that for a flat plate (parallel to air flow) at the same Re with a laminar boundary
layer. The coefficients for such a plate are, however, at a theoretical minimum and
this leads one to conclude that the vulture's maximum LjD is almost certainly not as
large as that determined by the sailplane technique.

Parasite drag coefficients for the vulture, based on both Raspet's data and mine,
are shown in Fig. 6 as a function of Re. On the same figure are shown the drag co-
efficients of a flat plate parallel to the air flow with a laminar boundary layer in one
case and a turbulent one in the other. The values of C^ (usually called Cj for a flat
plate) for the plate with laminar flow are, as mentioned previously, theoretically at a
minimum (Goldstein, 1965).
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Raspet (i960) presented 'average skin friction coefficients' for the vulture, none of
which was below the line for a laminar plate, but he did not describe the method used
to calculate the coefficients. The curves in Fig. 6 for soaring and gliding vultures
were computed from Raspet's values for LjD, b(i -44 m), W(22-$ N)andS'1o(i-o6m2),
using equations (7) and (8) and a M2 of 0-9. In gliding flight the vulture's minimum
Cjyp is 17% above the line for a flat plate with a laminar boundary layer, while in
soaring flight the minimum C ^ is 19% below the same line.

8. 12

Air speed (m/s)

16 20 24 28 32 36 40.

2-8 -

Fig. 5. Sinking speeds at various air speeds for the vulture, several other birds and a sailplane.
The aircraft in the figure are at minimum glide angles and are represented by the following
letters: (A) SHK sailplane (see Tucker & Parrott, 1970, for dimensions of plane); (B) gliding
vulture, Coragyps atratus (Raspet, 1950); (C) soaring vulture, C. atratus (Raspet, 1950); (D)
vulture, C. atratus (present paper); (E) falcon, Falco jugger (Tucker & Parrott, 1970); (F)
pigeon, Columba livia (Pennycuick, 1968); (G) fulmar, Fulmaris glacialis (Pennycuick, i960).
All points falling on the diagonal lines have the LID value indicated at the end of each line.

The curve calculated from tunnel data, by comparison, lies above the line for a
turbulent fiat plate and minimum C^ (which was reached at the same air speed as
maximum LjD) for the vulture is 1-9 times as large as the C^j, for a turbulent plate at
the same Re. Furthermore, bird-like airfoils with Re's around 3-75 x 10s have parasite
drag coefficients that are i-6 to 5-7 times as large as Cj^ for the turbulent flat plate
at the same Re (see Tucker & Parrott, 1970, for airfoil data).

Tucker & Parrott (1970) stated that Raspet's high LjD values were probably the
result of the vultures' using some form of atmospheric energy (such as vertical currents
of air or changes in the velocity of air) which the larger sailplane could not utilize.
They did not, however, analyse several other possible errors that could explain the
discrepancy between Raspet's data and mine: the effect of circling on sinking speed,
tunnel interference effects and boundary layer transition effects.
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The sinking speed of an aircraft in a turn is proportional to secant (Z?)1'5 (Cone,
1964). Angle of bank (y5) is the angle between a line perpendicular to the mean wing
plane and the vertical direction (von Mises, 1959). Raspet's data for soaring vultures
were obtained when the bird and the plane were circling together and the fact that
he did not correct data for the increase in sinking speed during a turn could account

a
001 -

0001 -

Fig. 6. Parasite drag coefficients for the vulture at various Re, based on both Raepet's data for
soaring and gliding vultures and on Parrott's wind-tunnel data. The upper line for the flat
plate parallel to airflow with a turbulent boundary layer is drawn from Prandtl's equation.
The lower line for the laminar parallel plate is drawn from the Blasius equation (see Tucker &
Parrott, 1970, for these equations).

for the larger L/D he reported for soaring vultures. If CL, total drag coefficient and
wing loading (W/S) are the same as for level flight, then in a turn requiring a /? of 300

(Raspet stated that the angle was usually less than 300), the sinking speed of the plane
and bird would be increased by about 25%. The difference in sinking speed between
bird and plane would be 25 % larger during a turn and the sinking speed calculated
for the vulture would be 25 % too small. This error does not, however, resolve the
difference between my data and Raspet's data for vultures gliding in a straight path.

Tunnel interference effects in this study do not seem large enough to explain the
disparity between tunnel and sailplane data. Only downwash was significant and this
effect caused the vulture's apparent drag in the wind tunnel to be smaller than the
actual drag. Neglecting downwash corrections entirely results in a maximum LjD of
13-6, a figure considerably lower than either of Raspet's.

Transition of air flow from laminar to turbulent could explain the discrepancy if
the air flow over the vulture's wings in the tunnel had not undergone transition, while
that over the wings of naturally flying vultures had. Schmitz (1952) worked at lower
Re's (approximate range: o-2 x io8to i-68 x io6) than most aerodynamicists and showed
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that transition can double the LfD of an airfoil. This effect probably does not account for
the disparity, however, since the vulture's Re, the tunnel turbulence factor and the
Re (around 7x10*) at which Schmitz observed a doubling of LjD for conventional
airfoils all indicate that the wings of the vulture in the tunnel had a turbulent boundary
layer.

Raspet concluded on the basis of low drag coefficients for the vulture that some
form of boundary layer control must operate to keep the air flow over the wings
laminar and the drag low. But Tucker & Parrott (1970) pointed out that, at a given
CL, the vulture would probably have a lower C ^ with a turbulent boundary layer than
with a laminar one over the wings. Furthermore, Schmitz's data and the vulture's Re
again indicate that the wings of vultures in free air also have turbulent boundary layers.

The wind-tunnel data I have presented, coupled with values of C^ for conven-
tional airfoils, strongly suggest that Raspet's low drag coefficients and high values of
HD are explained by the vultures' using atmospheric energy which the plane did not,
rather than by control of the boundary layer.

Gliding performance

Maximum LID for the black vulture is the largest for birds thus far tested in wind
tunnels. The falcon has a slightly smaller maximum LID of 10, while that for the
pigeon is only 6 (see Fig. 5). The L/Z) values for these birds are small compared to the
maximum L/Z) of 38 for the sailplane in the same figure.

Although the falcon does not achieve an L/D as large as the vulture's, it nevertheless
has a lower minimum sinking speed. This is possible because sinking speed is a function
of V and LID (see equation 5) and the falcon's lower air speed more than compensates
for its smaller £/£).

The vulture's air speed under natural conditions may be influenced by two possible
objectives of an avian glider: covering distance over the ground toward a site and
gaining altitude without flapping. In the wind tunnel the vulture achieves its minimum
sinking speed at an air speed (11*3 m/s) less than that for maximum LID (i3'9 m/s).
Tucker & Parrott (1970) analysed the significance of LID, V and time to maxi-
mizing the distance travelled or altitude gained by a naturally gliding aircraft under
various aerial conditions. According to their analysis the vulture should glide at
maximum LID in still air to cover the greatest distance over the ground (from a given
altitude). However, with a tail wind, the distance travelled would be maximized by
gliding at minimum sinking speed. Furthermore, in an updraft greater than the
vulture's sinking speed, the greatest altitude would be gained by gliding at minimum
sinking speed and remaining in the updraft as long as possible.

Wing geometry

Data for the pigeon, falcon and vulture (present paper) show that wing area and
wing span are linearly related at all air speeds and glide angles investigated.

At a given air speed the wing area of the falcon and vulture decreases as 6 increases.
At dM wing area of the pigeon and falcon decreases with increasing air speed. Wing
area for the vulture, however, increases slightly at dM as air speed increases.
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SUMMARY

1. A black vulture (mass = 1-79 kg) gliding freely in a wind tunnel adjusted its
wing span and wing area as its air speed and glide angle changed from 9-9 to 16*8 m/s
and from 4-8° to 7-9°, respectively.

2. The minimum sinking speed was 1-09 m/s at an air speed of 11-3 m/s.
3. The maximum ratio of lift to drag forces was 11-6 at an air speed of 13-9 m/s.
4. Parasite drag coefficients for the vulture are similar to those for conventional

airfoils and do not support the contention that black vultures have unusually low
values of parasite drag.

This study was supported by a National Institutes of Health Training Grant (No.
HE 05219) and a Duke University Biomedical Sciences Support Grant (No. 303-3215)
administered by V. A. Tucker.
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