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INTRODUCTION

A satisfactory understanding of the central nervous mechanisms underlying a
particular behaviour requires information about the nature of the input to single
participating motor nerve cells. In the case of swimmeret beating in lobsters, the
participating motoneurones discharge in repetitive bursts which contain from one
to several impulses each. In general, the intervals between successive spikes in each
burst decrease during the first half of the burst, and increase during the last half.
This finding led to the hypothesis that during swimmeret beating each participating
motoneurone receives an excitatory input which varies with time in a sinusoidal
fashion, at a frequency identical to that of swimmeret beating (Davis, 1969).

In the present paper the implications of this hypothesis are explored by experiments
on a computer-simulated neurone. We have found that the response of the artificial
neurone to a sinusoidal excitation reproduces the output of single swimmeret moto-
neurones in all respects, including many which were unforeseen. Moreover, slight
changes in the membrane parameters of the simulated neurone produce the full
range of output exhibited by swimmeret motoneurones. The results of the simulation
experiments therefore support the proposed hypothesis.

METHODS

The simulation was performed on an IBM/360 computer. Biological results were
obtained by methods described in previous papers (Davis, 1968a, 1969).

Properties of the simulated neurone

The artificial neurone was simulated in accord with generally accepted properties
of nerve cells (Fig. 1). Thus, the neurone was given a threshold for spike generation,
an absolute and a relative refractory period. The initial spike of a burst was generated
when the excitatory input (see below) first crossed the threshold value. Each spike
was followed by an 8 msec, period of absolute refractoriness, during which the
threshold value was effectively infinite. Following the absolute refractory period
the threshold value decayed exponentially from an arbitrary value of 10 times the
original threshold back to the initial threshold. The half-decay time of the threshold
function was varied from 1 to 20 msec.
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Properties of the simulated excitatory input

The simulated excitatory input varied sinusoidally with time, with minima
always occurring at zero (Fig. i). Maxima were varied between i and 10 times the
threshold value. The period of the oscillation was varied between 250 and 1000 msec,
and was inversely proportional to the amplitude, in accord with constraints developed
elsewhere (Davis, 19686,1969). The amount of time during which the excitatory input
exceeded the threshold value during each burst was held constant during a given
experiment, since the burst duration in swimmeret motoneurones is independent
of the frequency of swimmeret beating (Davis, 1969).
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Fig. 1. Plots of the computer output during low-frequency (a) and high-frequency (6)
sinusoidal excitation of the simulated neurone. Computations of the threshold and excitatory
input values were performed every a msec.

RESULTS

Variation in the number of spikes per cycle

The function relating the period of the sinusoidal input to its amplitude is approxi-
mately hyperbolic. When the time above threshold is held constant at 200 msec,
asymptotes occur at an input period of about 250 msec, and an amplitude equal to
the threshold value (Fig. 2). Plots of the amplitude of the sinusoidal input wave
against the number of spikes per cycle show that the relationship is approximately
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Fig. 2. Amplitude of the computer-generated sinusoidal excitatory wave plotted against its
period. The amount of time per cycle during which the amplitude of the excitatory wave
exceeded the threshold value was maintained at 200 msec, during the experiment.
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Fig. 3. Number of spikes per cycle produced by the simulated neurone plotted against the
period of the sinusoidal excitatory input. The number to the right of each curve shows the
duration of the half-decay time of the refractory recovery during the experiment. The time
above threshold was held constant at 200 msec, during all experiments.
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linear. Therefore, the relationship between the period of the sinusoidal input and
the number of spikes per cycle is approximately hyperbolic (Fig. 3).

Variation in the half-decay time of the refractory recovery following each spike
in the simulated neurone changes the shape and the position of the curve which relates
the period of the sinusoidal input to the number of spikes per cycle. As the refractory
decay time is increased, the curve is depressed and its average slope is increased
(Fig. 3). The position of the curve is also altered by changing the amount of time
per cycle during which the amplitude of the excitatory wave exceeds the value of
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Fig. 4. Number of spikes per cycle produced by the simulated neurone plotted against the
period of the sinusoidal excitatory input. The number to the right of each curve shows the
amount of time per cycle during which the amplitude of the excitatory wave exceeded
the threshold value. The duration of the half-decay time of the refractory recovery was
held constant at 7 msec, during all experiments.

the threshold. The curve is depressed as the time above threshold is decreased, but
the average slope of the curve is not affected (Fig. 4). Decreasing the time spent
above threshold during each cycle is of course the mathematical equivalent of increasing
the threshold value. Therefore, the different curves in Fig. 4 can be interpreted as
the responses to the same excitatory inputs of simulated neurones having different
thresholds for spike generation.

The behaviour of swimmeret motoneurones during swimmeret beating shows
many parallels to the simulated output described above (Fig. 5). First, the relationship
between the duration of the movement cycle and the number of spikes per cycle is
approximately hyperbolic. Secondly, the minimum values of the two asymptotes
are approximately the same as those of the simulated neurone. Thirdly, the curves
for different swimmeret motoneurones occupy different positions and have different
slopes, as would be expected for motoneurones heterogeneous with respect to re-
fractory recovery time and with respect to threshold for spike generation.
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Variation in the burst duration
The maintenance of the excitatory input wave above threshold for a constant

amount of time during each cycle does not imply that the burst duration also remains
constant. Instead, the burst duration varies in a 'sawtooth' fashion as the period of
the sinusoidal input wave is increased, each 'tooth* corresponding to the loss of
another spike from the burst (Fig. 6). The rising slope of each tooth decreases as
the period of the sinusoidal input wave is increased. The range of the burst duration,
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Fig. 5. Number of spikes per cycle produced by real swimmeret motoneurones plotted
against the duration of the movement cycle. Each point is the average of the indicated
number of bursts. A and • , activity of single motoneurones; • , summed activity of three
motoneurones innervating the same muscle.

i.e. the height of the tooth, is inversely proportional to the number of spikes per
burst and therefore directly proportional to the duration of the refractory recovery
period (Fig. 6).

Plots of the burst duration of real swimmeret motoneurones against the frequency
of swimmeret beating have shown that there is no correlation between these two
variables over the entire range of frequencies of swimmeret beating (Davis, 1969).
Following the above simulation result, however, the biological data were re-examined
and found to exhibit strong trends over limited ranges of frequencies of swimmeret
beating (Fig. 7). The same sawtooth distribution as found in the output of the
simulated neurone appears also in the output of the swimmeret motoneurones.
As with the simulated output, the rising slope of each tooth decreases as the duration
of the movement cycle increases, and the range of the burst duration is greater
during movement cycles of long duration.
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Fig. 6. Duration of bursts in the simulated neurone plotted against the period of the sinusoidal
excitatory input. The number to the left of each curve shows the duration of the half-decay
time of the refractory recovery during the experiment. The time above threshold was held
constant at zoo msec, during all experiments.
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Fig. 7. Duration of bursts in real swimmeret motoneurones plotted against the duration
of the movement cycle. Each point is the average of the number of bursts indicated.
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Temporal structure of bursts

The temporal structure of the bursts of impulses within swimmeret motoneurones
is described in the preceding paper (Davis, 1969, Fig. 17). The temporal structure
of the bursts produced by the simulated neurone is similar. That is, the intervals
between successive spikes in each burst decrease during the first half of the burst,
and increase during the last half (Fig. 8). The range of the duration of the intervals
within bursts increases as the duration of the refractory recovery period is increased
(Fig. 8).
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Fig. 8. Sequential histograms of the average interspike intervals within all bursts produced
by the simulated neurone, for refractory half-decay times of (a) 5, (6) 7, (c) 10 and (d) 20 msec.
Points representing a common burst size are connected to help to show the temporal structure
of the bursts. Filled circles represent congruent points. The number to the right of each curve
shows the number of bursts used to compute the curve.

The correspondence between the output of the unmodified simulated neurone
and that of the swimmeret motoneurones is not exact on the extreme ranges of
sinusoidal input frequencies. When only three spikes are contained within the burst
of the simulated neurone, the last interval is the larger, but the difference between
the two intervals is not as pronounced as in the bursts of the swimmeret motoneurones.
This could mean that during low-frequency swimmeret beating the excitatory input
to single motoneurones deviates from a sinusoidal waveform. When many spikes
are contained within the burst of the simulated neurone, the last interval is usually
the longest in the burst (Fig. 9), as in the bursts of the swimmeret motoneurones.
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Fig. 9. The ratio of the last to the first interval in each burst of the simulated neurone,
plotted against the period of the sinusoidal excitatory input. The half-decay time of the
refractory recovery following each spike was 7 msec., while the time above threshold during
each cycle was 200 msec.
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Fig. 10. Effect of accumulating refractoriness during each burst in the simulated neurone
on the temporal structure of the burst. The amount of accumulating refractoriness increases
from a to/ . In each case the two curves show the sequential histograms of inter-spike intervals
within a single simulated burst, before (lower curve in each case) and after (upper curve)
adding a provision for accumulating refractoriness during the burst. Filled circles represent
congruent points. In all cases the period of the sinusoidal excitatory input was 300 msec.,
the half-decay time of the refractory recovery was 7 msec., and the time above threshold was
200 msec, d, Half-time in msec, of the decay of the exponential curve relating the increment
in refractoriness (delta) to the duration of the preceding inter-spike interval (see text),
while o is the maximum value in msec, attained by delta, from which point the exponential
decay was begun.
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The preceding intervals are not constant in duration, however, as they are in the
bursts of the swimmeret motoneurones.

We were unable to simulate the temporal structure of bursts containing many
impulses by varying only the time course of the refractory recovery period following
each spike. The desired output was obtained from the simulated neurone, however,
by adding a provision for accumulating refractoriness during the course of each burst.
This accumulation was achieved by increasing the half-decay time of the refractory
recovery following each spike in the burst by a quantity, delta, whose value was
inversely proportional to the duration of the immediately preceding interspike
interval. The function relating delta to the duration of the preceding interval was
exponential with a variable decay constant. As shown in Fig. 10, the presence of
accumulating refractoriness 'flattens' the burst, i.e. reduces the range of the duration
of the inter-spike intervals, and increases the relative duration of the intervals near
the end of the burst.

DISCUSSION

The close correspondence between the behaviour of the simulated neurone and
that of the swimmeret motoneurones suggests that the respective excitatory inputs
vary with time in the same way, i.e. sinusoidally. Some of the similarities between
the simulated and real neurones must be interpreted with caution, however. For
example, the sawtooth distribution of the burst duration (Fig. 6) is caused by holding
the excitatory waveform above threshold for a fixed amount of time per cycle during
frequency-correlated variation in the amplitude of the waveform, and does not
depend upon the precise shape of the waveform. A sinusoidal waveform, however,
provides the simplest explanation for the hyperbolic input-output curves (Figs. 2-5)
and also for the temporal structure of individual bursts (Fig. 8). The position of
the hyperbolic input-output curve of the simulated neurone (Fig. 2) provides a
satisfactory teleology for the range of frequencies of swimmeret beating (1-4 cyc./sec.).
In addition, the steepest portion of the curve, over which the ' control sensitivity' is
the greatest, coincides with the most commonly encountered range of frequencies
of swimmeret beating (2-3 cyc./sec).

The excitatory input used in the present simulation was of course a continuous
variable. The analogous input to the swimmeret motoneurones need not originate
as a continuous function, however, since the integrative membrane of motoneurones
behaves like a digital-to-analogue converter. Owing to this integrative capability the
excitatory input to the swimmeret motoneurones could originate as a propagated
wave of conventional action potentials in the ganglionic neuropile, as discussed in
the preceding paper (Davis, 1969).

The rationale underlying the type of overt neural modelling described in the
present paper is reviewed by Harmon & Lewis (1966). The present work reaffirms
that such modelling can be useful to the biologist in at least three ways. First, it
permits the rigorous formulation of a hypothesis and a rapid test of its feasibility.
Secondly, it stimulates the re-examination of biological data, often resulting in new
understanding and/or insight. Thirdly, overt modelling is a useful tool for planning
further biological experimentation. The present work, for example, suggests that
accumulating refractoriness during each burst of impulses in the swimmeret moto-
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neurones of the lobster helps to determine the temporal structure of the burst, a hypo-
thesis which can be readily tested using biological preparations. Accumulating re-
fractoriness also plays a role in the production of the rhythmic motor discharge
patterns underlying locust flight (Wilson, 1964). The results of the present study
also encourage efforts to determine whether the ganglionic neuropile can support
a propagated wave of excitation having the required properties, and to record directly
this hypothetical central nervous activity.

SUMMARY

1. The response of a computer-simulated neurone to a sinusoidal excitatory
input was studied and compared to the rhythmic discharge patterns of swimmeret
motoneurones in the lobster.

2. All of the output parameters of the simulated neurone closely resemble those
of the swimmeret motoneurones, suggesting that the excitatory input to the swimmeret
motoneurones also varies with time in an approximately sinusoidal fashion.

3. The full range of behaviour exhibited by swimmeret motoneurones was obtained
from the simulated neurone by varying the time course of the refractory recovery
following each spike, the effective threshold for spike generation, and the rate of
accumulation of refractoriness during each burst.

This work was supported by U.S.P.H.S. Postdoctoral Fellowship no. NB24,
882-1 NSRB to W.J.D. and U.S.P.H.S. grant 5 ROi NB01624 to M. J. Cohen.
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