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INTRODUCTION

The primary aim of this paper is to estimate the mechanical power required for a
pigeon to fly at various speeds. Although this is only one aspect of ‘performance’ in
powered flight, it is perhaps the most informative, and sheds much light on more
general performance limitations in flying animals.

Most small and medium-sized flying animals are able to hover, at least for short
periods, and they thus share with helicopters the ability to fly horizontally at any
speed from zero up to some maximum. Like helicopters, they use the whole lifting
surface for propulsion as well as for balancing the weight, instead of using a physically
separate source of thrust as in a fixed-wing aeroplane. The more general principles of
helicopter theory also apply to flying animals, and are adapted here to investigate the
power requirements of the pigeon. Among several excellent textbooks on helicopter
engineering, that of Shapiro (1955) has been found especially useful.

The conclusions of the present study are in general agreement with those of
Tucker (1968), who made respirometric and other measurements on budgerigars
(Melopsittacus undulatus) flying in a wind-tunnel. The present power calculation is
based entirely on mechanical observations, and provides indirect estimates of such
quantities as oxygen consumption, range and endurance, and may thus be regarded
as a complementary approach to the same general problem.

MATERIALS AND METHOD

The same pigeons (Columba livia) were used as those on which the previous paper
(Pennycuick, 1968) was based. Some of the data required in the calculation were
derived from the gliding measurements described in that paper, others from further
experiments described below, in which the same wind-tunnel and training technique
were used. In all the experiments described in this paper the wind-tunnel was set
with its axis horizontal, and observations were made with a Bell and Howell
70 DA 16 mm. ciné camera running at 426 frames/sec. (determined by filming a clock
at the end of each film). Three camera positions were used (Fig. 1): (1) 1-9 m. down-
stream of the bird, level with the bird and looking upstream; (2) 6-0 m. above the bird,
and 1-9 m. downstream; (3) 1-0 m. to one side, looking at right angles to the airstream.

* Present address: Department of Zoology, University College Nairobi, P.O. Box 30197, Nairobi,
Kenya.
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Additional information was obtained from a film of free-flying pigeons taken on the
laboratory roof with a Milliken high-speed camera running at 400 frames/sec. This
film was taken by John Hadland (Photographic Instrumentation) Ltd. for the B.B.C.,
to whom I am most grateful for giving me a copy, and allowing me to use it for
research purposes.

HORIZONTAL FLIGHT MEASUREMENTS

Various quantities required in the power calculation were measured as functions of

forward speed, as follows:

2

1m.
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Fig. 1. Ciné camera positions, numbered as in the text,

Sweep angle (o) and wingbeat frequency (F)

Sweep angle is defined as the aggregate angle swept through by the humeri of both
wings during the downstroke. It was determined by filming a pigeon in horizontal
flight from behind (camera position 1, Fig. 1). The film was later back-projected onto
squared paper and examined frame by frame. Figure 2 shows tracings of two frames,
at the beginning and end of a downstroke. The angle between the estimated positions
of the humeri was measured at each position, and the difference between these angles
gives the sweep angle for that stroke. Pigeons did not fly absolutely steadily in the
tunnel, and in practice both sweep angle and wingbeat frequency varied periodically,
with a tendency for bursts of vigorous flapping every 5—10 wingbeats. The graph of
Fig. 3 is based on an average of 30 wingbeats for each point.
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Wingbeat frequency was determined simultaneously with sweep angle, by counting
frames over a whole number of wingbeats, starting and finishing at the beginning of
a downstroke. The results are plotted in Fig. 4.

The points for zero speed in Figs. 3 and 4 are derived from the high-speed film
referred to on page 528, which was taken in anticyclonic conditions, with no detectable
wind. Two sequences were found, one of 5 and one of 8 wingbeats, in which a pigeon
remained approximately stationary, and the wingbeat frequency was 6-g/sec. in both
cases. The sweep angle was assumed to be the maximum recorded by Pennycuick &
Parker (1966), 284°. The zero-speed points of Figs. 3 and 4 are somewhat more
conjectural than the others, because of uncertainty that the birds’ airspeed really was
zero.

el

Fig. 2. Tracings of two frames from a film taken from camera position 1 (Fig. 1), showing
consecutive fully ‘up’ and fully ‘down’ wing positions. ‘ Sweep angle’, o, for that downstroke
is defined as o0 = oy—o0,.

Inclinication of flapping plane @

When a bird hovers it beats its wings back and forth horizontally, and the faster it
goes, the more nearly the plane in which the wings beat becomes vertical. The
‘inclination of the flapping plane’ is defined as zero when the wings beat horizontally,
and 9o° when they beat vertically. It was measured from a film taken from camera
position 3 (Fig. 1), in which the pigeon was photographed against a background con-
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sisting of a white card, ruled with black lines parallel to the airflow. The film was
back-projected frame by frame onto squared paper, one axis of which was aligned
with these lines. The position of the leading edge of the wing at the wrist joint was
marked at the beginning and end of the downstroke as shown in Fig. 5, and the acute
angle between the airflow and the line joining the two marks was measured. Measure-
ments were made on an average of 20 wingbeats at each speed, in order to minimize
errors caused by movement of the pigeon upstream or downstream. The results are
plotted in Fig. 6.
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Fig. 3. Measurements of sweep angle at various speeds. The line was drawn in by eye, and was
represented in the computer programme by a fourth degree polynomial.
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Fig. 4. Flapping frequency versus speed. The significance of the line is as in Fig. 3.

ANALYSIS OF POWER REQUIREMENTS

In horizontal flight at constant speed power is absorbed in three ways: (1) Induced
power—the power needed to impart downward momentum to the air, sufficiently
rapidly to produce a reaction balancing the bird’s weight; (2) profile power—the
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power needed to overcome the profile drag of the wing; (3) parasite power—the
power needed to overcome the drag of non-lifting parts, i.e. the body in the case of a
bird.

Fig. 5. Tracings of two frames, superimposed, taken from camera position 3 (Fig. 1), showing
consecutive fully ‘up’ and fully ‘down’ wing positions. The horizontal line, ruled on a card
beyond the pigeon, shows the direction of the airflow. The ‘inclination of the flapping plane’,
®, is defined as the acute angle between this line and the dotted line.
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Fig. 6. Inclination of the flapping plane versus speed. The significance of the line is as in Fig. 3.

In non-horizontal flight one must also include climbing power, which is equal to the
product of the weight, and any upward component of speed. A particular climbing
case is considered on page 544.

The power required for a pigeon to fly horizontally at speeds ranging from o to
22 m.[sec. was estimated with the aid of Bristol University’s Elliott 503 computer.
The above three components of power were calculated in turn, as follows.
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Induced power

In horizontal flight, the upward reaction on the wings must equal the weight, and
this implies that the rate at which downward momentum is imparted to the air is
numerically equal to the weight. This rate of change of momentum is the product of
a downward induced velocity and the mass of air to which this velocity is imparted in
unit time.

Fig. 7. View of a hovering pigeon from above, the wings beating horizontally. The stippled area
is defined as the ‘disk area’, S,.

Considering the hovering case first, the bird’s body remains stationary and the
wings beat horizontally, sweeping out an area (as seen from above) which is referred
to as the disk area (S;) (Fig. 7). The airflow through the wing disk is entirely due to
the induced velocity V,. The following simplifying assumptions, which give good
approximations in calculating helicopter performance, are adopted here. (1) The
induced velocity is assumed to be constant over the entire disk area. (2) An abrupt
pressure rise is assumed to occur as the air passes downward through the disk. This
pressure increment, multiplied by the disk area, must, of course, equal the bird’s
weight. Half of the pressure step is assumed to be contributed by an area of reduced
pressure (relative to ambient) above the wing disk, and half by increased pressure
below it.

The term ‘induced velocity’ (V,,) here refers to the velocity with which the air
passes through the wing disk, and it reaches this velocity as a result of accelerating
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downwards into the area of reduced pressure above the wing disk. Because there is a
similar pressure gradient below the bird, the air continues to accelerate downwards
after passing through the wing disk, and eventually reaches a velocity of 2V, far
below the bird. This is proved in all textbooks on helicopters, and is illustrated
diagrammatically in Fig. 8.

The induced velocity in hovering is easily calculated in the basis of the above
assumptions. The mass flow (f,,) is the rate at which mass passes through the wing

disk, and is given by
o = SdVizp’ (I)

where p is the air density.

Air at rest

Fig. 8. Airflow past a hovering pigeon, seen from the side, Air is drawn from rest far above the
bird, passes downwards through the wing disk at the ‘induced velocity’ V,,, and eventually
accelerates to 2V, far below the bird.

The air is eventually accelerated to 2V, and so the rate of change of momentum,

which equals the weight W, is
Ve = W= 2SdVizzp! (2)

- %)

The induced velocity is thus proportional to the square root of the disk loading,
which is defined as the ratio (W/S;). The induced power P; is

P= WY =W [(5 =) (4)

so that
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In forward flight the weight must still be balanced by the rate of change of down-
ward momentum imparted to the air. The mass flow through the wing disk is now,
however, the product of the density, the disk area, and the resultant of the induced
velocity and the forward speed. The faster the bird goes, the more mass passes through
the wing disk in unit time, and the less induced velocity is needed to produce the
requisite rate of change of momentum. At a forward speed ¥ the mass flow is

fo = pS(VE+VE), (5)
so that the rate of change of momentum is
Wiefyn = W = 20S Wi (V24 V). ®)

The induced power is still the product of the weight and the induced velocity, so that

P‘i = WViz = 2deVzgz\/(V2+Viz)' (7)

Validity of constant disk area

In view of the finding in the previous paper (Pennycuick, 1968) that wing-span in
gliding flight is progressively reduced with increasing speed, it might be wondered
whether the same is true in horizontal flapping flight, and a film was taken from above
(camera position 2 in Fig. 1) in order to check this point. It was found that the wings
were extended to their full span on the downstroke at all speeds at which the pigeon
would fly horizontally. On the upstroke, however, span was reduced at high speeds in
roughly the same way as in gliding. In fast flight the pigeon extends its wings fully at
the start of the downstroke, and at the bottom of the downstroke it flexes the carpal
joints, and keeps them flexed during the upstroke. The alternate flexion and extension
of the carpal joints is clearly seen in the high-speed film of free-flying pigeons.

The fact that the wings only sweep through some 170° out of the full 360° of the
disk at medium speeds is of no account. For the purpose of calculating mass flow,
‘disk area’ remains the full circle, whose diameter is equal to the wing-span, whether
the wings are flapped or not. The induced velocity for a fixed-wing aeroplane or glider
is calculated by considering the mass flow through a circle, whose diameter is equal
to the wing-span.

Horizontal induced power

In forward flight the drag of the body has to be overcome by imparting backward
momentum to the air, and this horizontal component of induced velocity can be
calculated in basically the same way as the vertical component. The horizontal
induced velocity increases progressively with speed, and amounts to about o-19 of
the forward speed. The power needed to generate it would not reach o-02 W. over the
speed range considered, and can be neglected. For similar reasons as apply in the case
of vertical induced power, the induced power needed to overcome a given drag is
inversely proportional to the square root of the disk area. Thus much less induced
power is needed to overcome body drag if the whole wing is flapped than if the thrust
is derived from a propeller or jet, whose diameter is much smaller than the wing span.
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Profile power

The calculation of profile power is somewhat laborious, and could not have been
undertaken without using the computer. The difficulty is that the speed and direction
of the relative airflow is different at every point along a flapping wing, so that the
behaviour of the whole wing has to be approximated by some form of strip analysis.
The following calculation refers only to the downstroke, profile power on the upstroke
being estimated separately on page 538.

The outline of one wing of the pigeon on whom most of the wind-tunnel measure-
ments were made was traced on graph paper, and the tracing was divided span-wise
into thirty-two strips, each 1 cm. wide. The areas of these strips were measured, S;

v

Viz Vr

Fig. 9. Triangle of velocities showing the forward speed V, the induced velocity Vy,
and their resultant V,.

being the area of strip ¢ (see appendix). Each strip was assigned a flapping radius,
that is, the distance of its assumed centre of lift from the centre of rotation of the
head of the humerus. The arrangement of strips was such that the flapping radius r, of
strip 7 was 7 cm.

¥V, was first calculated (see p. 534), and hence the magnitude of the resultant velo-
city ¥V, (Fig. 9) where

V= J(Vit+ V3. (8)
The downwash angle ¢ is given by
€ = tan™! E
= V) (9)

This defines the general flow, whose magnitude and velocity is the same for the
whole wing. It now has to be combined with a flapping velocity ¥V}, which is different
for each strip. Its magnitude at strip 7 is given by

Vi = oy, (10)

where o is the angular velocity of the wing during the downstroke. It is the angle
swept through by one wing in a downstroke, divided by half the period of one com-
plete wingbeat cycle, and is thus equal to the product of sweep angle (for both wings,
as defined on page 528) and flapping frequency.

Figure 10 shows V] and V};, and their resultant ¥;, which is the local resultant
velocity at strip 7. V; is inclined at an angle B; to the horizontal. It can be seen from
Fig. 10 that

Vi = J[VE+VE—2W}; cos (1~ P —e)] (11)
and
. [V sin (m—®—
B; = sin! [ si S (;,; e)] —é€. (12)
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The force F; in Fig. 10 is the resultant of the local lift L; and the profile drag D,
on strip 7. It is inclined at an angle ¢, to the vertical, where

¢; = gm—B; . (13)
¥, which is assumed to be the same for all strips, is given by
L.
= -1 i
¥ = tan (Dpi). (14)
F

Vertical

Horizontal

Fig. 10. Local velocities and forces at strip i of the wing in horizontal flapping flight. ¥, is the
resultant of V, (see Fig. 9) and the local flapping velocity Vy;. L; and D, are the lift and
profile drag respectively, and F; is their resultant.

Evidently strip ¢ contributes a vertical component of force F; cos ¢; towards
balancing the bird’s weight W, so that for one wing divided into # strips
i=n
X Ficos ¢, = 3W. (15)
The force F, is different for each strip, but can be represented by a dimensionless
coefficient Cp, which can, with reasonable plausibility, be assumed to be the same for
the whole wing:

F;
Cr = pVES

(16)
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From equations (15) and (16)

AW = 3pCp 3 VA S, cos ¢
i=1

so that
w

i=n *
2
P .El Vi S, cos ¢,
i=

Cp= (17)

Cp is the resultant of the lift coefficient C;, and the profile drag coefficient Cpy. If
the ratio of these coefficients (or the angle ¥) is known, Cy, can be obtained from Cx
by the relation

Cr = Cpsin V. (18)

06
05 |-
04
0.3 -

02

Profile-drag coefficient

01

o | | 1 1 | ]

0 05 10 15 2:0 25 30

Lift coefficient

Fig. 11. Profile drag coefficient as a function of lift coefficient, measured in gliding flight
(Pennycuick, 196 ). The line is drawn in by eye to give a minimum C of 0'01, and extrapolated
to cover the highest lift coefficient required in flapping flight (black square). It was fitted by a
fourth-degree polynomial to enable profile drag coefficient to be calculated in the computer
program,

Unfortunately ¥ cannot be estimated until Cy, is known, and had to be found in
the program by iteration. A trial value of ¥ = 1'5 radians was first used, and on
this basis ¢; was calculated for each strip from equation (13), and thence C, from
equations (17) and (18). Cp, was now calculated from the curve of Fig. 11, which was
derived from the gliding measurements described in the previous paper, and repre-
sented in the program by a fourth-degree polynomial. The validity of this step is
considered on page 539. A new value of ¥ was now obtained from the relation
Cr

T~ (14)

¥ = tan—?!
Cpo

and this was used to calculate a new set of values for ¢, and hence new values for C;,
and Cp. This was repeated until the value of ¥ changed less than o-oo1 radian in
successive repetitions of the cycle.

Having found a value for Cj, which is assumed to apply to the whole wing, the
profile drag of each strip can now be calculated, and hence the power needed to over-
.come the profile drag of the whole wing. This profile power may conveniently be
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divided into two components: P, is the power needed to maintain the wing’s
angular velocity in the downstroke, while P, is that needed to overcome that com-
ponent of the profile drag which opposes the forward movement of the whole bird.
(a) P, prol

The profile drag on strip 7 acts parallel to the local relative airflow, but in general
not parallel to the flapping direction (Fig. 10). The angle 8, between the local relative
airflow and the flapping direction is

6, = ®—B. (19)

The work Q; done against the profile drag of strip ¢, by rotating the wing through one
downstroke, is therefore
O; = D,; cos 6,3 or,, (20)

so that for all the strips of both wings the power required is

P = oF 3 Dy,r.c0s 6. (21)
i=1

(6) Pproe

The component of the profile drag on strip 7 acting parallel to the flight direction is
D,; cos B; (Fig. 10). The power needed to overcome it is the product of this com-
ponent of drag and the forward speed, so that for the whole of one wing

i=n
Ppoa =V '21 Dpicos B, (22)
1=
This needs to be doubled to cover both wings, but, as only the downstroke is being
considered at present, only half the cycle is involved—thus equation (22) can be used
as it stands to represent P, for both wings, for the downstroke only.

Profile power in the upstroke

In fast flight the wing could well be elevated passively; it is difficult to estimate the
work done (if any) by the flight muscles during such elevation, but this would certainly
be small, and is neglected. Some power must, however, be needed to counteract the
retarding effect of wing profile drag on the forward motion of the bird, and to allow
for this P, is doubled. This may be pessimistic, since wing-span and area are
reduced during the upstroke in fast horizontal flight, which should produce a reduc-
tion of wing profile drag (Pennycuick, 1968). Any such saving is difficult to estimate,
however, and at present doubling Py, is the best method available for allowing for
wing profile drag during the upstroke. It is assumed, in effect, that P, is present
during the downstroke only, whereas P, continues throughout both the downstroke
and the upstroke.

At very low speeds elevation of the wing is certainly active (Brown, 1948), and some
work is done, presumably by the supracoracoideus. Pennycuick & Parker (1966)
estimated that the maximum work done in one contraction by the supracoracoideus
would be 8-59, of that done by the pectoralis, and on this basis one could suggest that
the supracoracoideus should contribute about 0-26 W. to the profile power during
hovering, when this component is presumably maximal. This is conjectural, however,
and, as this component appears to be small, it too is neglected.
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Stmplifications in profile drag calculation

(1) Direction of forces. Strictly speaking, the profile power calculation refers only to
the mid-point of the downstroke, except in hovering, where the wingbeat plane is
horizontal. At low speeds, where the wingbeat plane is nearly horizontal, the error
from this source would be small, whereas at higher speeds the sweep angle is reduced
and the wing can be assumed to do most of its work within 4 30° of the horizontal
position. This complication has therefore been neglected.

(2) Calculation of profile-drag coefficient. The relation between Cp and Cy, (Fig. 11)
is based on the gliding measurements of the preceding paper (Pennycuick, 1968),
where the observations at high C;, refer to the fully extended wing, while those at
low Cy, refer to the wing with carpal joint flexed. It was not possible to test the extended
wing at low lift coefficients. In horizontal flight the wing is extended during the down-
stroke at all speeds, and it is possible that at high speeds the estimated profile-drag
coefficient is in error because of this.

At very low speeds the lift coefficient far exceeds the maximum obtainable in gliding
pigeons, so that one has to guess at the profile-drag coefficient. The curve has been
extrapolated on the assumption that at a lift coefficient of 2-8 a profile drag coefficient
of 0-54 would prevail, which it is hoped is a sufficiently pessimistic assumption. The
left-hand end of the curve has also been adjusted; it was explained in the preceding
paper (Pennycuick, 1968) that the very low values of wing profile drag obtained at
high gliding speeds are subject to some doubt, so in order to avoid the risk of undue
optimism the curve was made to give a minimum Cp, of o-o1, ignoring the lowest
experimental points which are in the region of 0-003.

It can be seen that because of these various reservations the estimated profile
power is subject to rather more doubt than the other two components.

Parasite power

Parasite power P, is that needed to overcome the drag of the body, and is given by
Ppar = %P V;-a SpCDp: (23)

where S, is the frontal area of the body and Cy,,, is its drag coefficient.

From the results of the preceding paper Cp,, was taken to be 0'43 and S, was taken
to be 36 cm.2—that is, the body was taken to be equivalent to a flat plate 155 cm.2 in
area. It may be noted in passing that this constitutes a parasite-drag ratio of 0:0044;
that is, the ratio of the equivalent flat plate area of the body to the disk area. This
would be considered a medium value of parasite-drag ratio in helicopter practice
(Shapiro, 1955).

The power-versus-speed curve

The three calculated components of power are plotted against speed in Fig. 12.
Induced power is 8-4 W. in hovering, but declines rapidly as speed is increased, and
falls below 2 W. at speeds above 9 m./sec. Parasite power, on the other hand, is
negligible at low speeds, and remains below 1 W. up to 10 m./sec., after which it
increases rapidly to become the largest component above 19 m./sec. Profile power is
roughly constant between 5 and 6 W. over the range 3-18 m./sec., and is the largest
component over most of the speed range, from about 4 to 19 m./sec.
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Although the power calculation contains many assumptions and approximations, the
more important of which have (it is hoped) been pointed out, there is no reason to
doubt that the main trends are as shown in Fig. 12—that is, the induced power is
high in hovering and drops sharply with increasing speed, the parasite power starts
at zero, and increases with roughly the cube of the speed, and the profile power is
substantial at all speeds.

The sum of the three components is the total power required to fly at any particular
speed, and this is also plotted against speed in Fig. 12. The calculated total power is
about 11-5 W. in hovering but declines steeply as speed is increased to a minimum of
87 W. at 8-9 m./sec. Above this speed the total power again rises. The slight hump
in the curve of Fig. 12 at about 1 m.[sec. results from the very high drag coefficient
assumed to prevail at low speeds, and should not be taken too literally.

Maximum power
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Fig. 12. Calculated power required and power available plotted against speed for the pigeon
(see text). The corresponding oxygen consumption is shown at right. P;, Induced power;
Pyro, profile power; Py, parasite power; P, total power.

The minimum-power speed, about 8—9 m.[sec., is about the same as the minimum
gliding speed (about 8-6 m.[sec.), and the power required to fly at this speed is only
about three-quarters of that required in hovering. It is the speed at which the bird
should fly if its object is to remain airborne for as long as possible on a given amount of
fuel—but not if it needs to travel the maximum possible distance for a given amount
of fuel. l

Range
If P is the power in watts, and ¥ the forward speed in m./sec. then the ratio

| 4
E=3 (24)
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is the distance in metres travelled per joule of work done. To gain an idea of the
pigeon’s fuel consumption, it will be assumed that oxidation of 1 g. of fat yields
40,000 joules of energy, and that 209, of this, or 8coo J. is available as mechanical
work. The distance in kilometres, flown per gram of fat oxidized, calculated on this
basis, is plotted against speed in Fig. 13. The maximum, 11-8 km./g., is achieved at
16 m./sec.: this maximum-range speed is much faster than the minimum power speed
(8-9 m./sec.), at which only about 8 km. would be flown per gram of fat oxidized.

To assess a pigeon’s effective range, a large (471 g.) male pigeon was killed, and the
total fat was extracted with hot chloroform in a Soxhlet apparatus; 37-4 g. of fat were
extracted. If the pigeon were to oxidize the whole of this by flying at its maximum-
range speed of 16 m.[sec., it would travel about 400 air km., and be airborne for
about 7 hr. The pigeon used for this estimate had been kept on a ration of 28 g. of
mixed seed per day, which would be normal for racing pigeons flying on medium-
distance races of 300 km. or so. A fat pigeon would probably contain at least twice as
much fat as the one extracted. Exceptionally good racing pigeons do on occasion home
over distances as great as 8oo km. in a single summer’s day, with perhaps 15 hr. flying
time. On the basis of the above calculation, this would call for a usable fat store of
some 7o g., which would appear quite feasible.

Effective lift:drag ratio
In a fixed-wing aircraft flying horizontally at a constant speed V the weight W is
balanced by the lift L provided by the wings, and the drag D is balanced by the thrust
T of the propeller or jet (Fig. 14). The power required, P, is then

P=TV =DV = WV%. (25)
If the power, weight and speed are known, the lift: drag ratio is given by
L wv
D=P (26)
In the same way an effective lift: drag ratio can be defined for a helicopter or a bird in
horizontal flight as
L) wv
=~ =2, 26

Although this quantity has not the simple physical meaning indicated by Fig. 14
for a fixed-wing aircraft, it has a similar significance in performance analysis. It is a
dimensionless number which can be used to compare the aerodynamic efficiency of
flying machines or animals of different sizes and weights.

The effective lift: drag ratio, when divided by the weight, yields the distance flown
per unit work done (equation 24). Thus if E is the mass of fuel carried (expressed in
energy units), the range R is given by

o-(),5

To a first approximation the amount of fuel carried is likely to be a fixed proportion
of the take-off weight in animals or aircraft of different size. In this case range is
35 Exp. Biol. 49, 3



542 C. J. PENNYCUICK

proportional to lift: drag ratio only, and is independent of weight, since the ratio EJ/W
is constant. It need cause no surprise to learn that a ruby-throated hummingbird
(Archilochus colubris) can fly the 500 miles across the Gulf of Mexico non-stop
(Lasiewski, 1962). The feat is not inherently more difficult for a small bird than for a
large one, and implies only that the hummingbird has as good an effective lift:drag
ratio as larger birds (see also p. 547).

The curve of (L/D)ey versus speed for the pigeon has the same form as the range
curve of Fig. 13, and is shown on the same graph. Its maximum value is estimated to
be 5-9. This is a poor value by helicopter standards, where values of (L/D)y; of 15 are
commonly obtained, and 20 is not unknown. The poor estimated performance for
the pigeon is partly due to the high wing profile coefficients assumed, and partly to the
large equivalent flat plate area of the body. Both quantities are derived from gliding
measurements, and there are no grounds at present for regarding them as pessimistic.
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Fig. 13. Calculated effective lift: drag ratio, and range per gram of fat oxidized, plotted against
speed for the pigeon.

An estimate of effective lift:drag ratio for a smaller bird, the blackpoll warbler
Dendrotca striata, can be obtained from figures given by Nisbet, Drury & Baird (1963)
for fat consumption during long migratory flights over the sea. By comparing the
fat stores of samples of birds taken before and after a sea crossing, they estimated that
these birds, whose average weight was 19-0 g. wt., used 1-02 kcal. of chemical energy
per hour. If one-fifth of this is assumed to have been converted into mechanical work,
the average power output would be 854 J./hr. The birds are stated to fly at about
20 knots (37 km./hr.). Substituting these figures in equation (26) yields an effective
lift: drag ratio of 8-1. When it is remembered that the figure given by Nisbet et al.
(1963) for fat consumption represents a minimal estimate, so that the resulting esti-
mate of (L/D),,, is likely to err on the high side, the agreement with the value estimated
above for the pigeon is remarkably close.

The recent respirometric measurements of Tucker (1968) on the budgerigar
(Melopsittacus undulatus) provide another estimate of (L/D),y, in a different species,
by another method again. At the minimum-power speed (35 km./hr.) the oxygen
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consumption of a budgerigar weighing 35 g. wt. was found to be 10-2 ml./min. in
excess of resting metabolism. Assuming that 4 J. of mechanical work are done per
ml. of oxygen consumed, the power output would be 0:68 W., and the effective
lift: drag ratio 4-9 (from equation 26). Similarly, measurements of oxygen consump-
tion at 28, 42 and 48 km./hr. yield estimates for (L/D), of 3-8, 49 and 4-0 respec-
tively.

Oxygen consumption

If one assumes that 2:03 1. of oxygen are required to oxidize 1 g. of fat (Prosser &
Brown, 1961), then the oxygen consumption corresponding to the mechanical power
output at the minimum power speed would be 132 ml./min. To this must be added
5 ml./min. for resting metabolism (Lasiewski & Dawson, 1967), making 137 ml./min.

A

w

Fig. 14. Equilibrium diagram for level unaccelerated flight in a fixed-wing aeroplane.
The weight is balanced by the lift and the drag by the thrust.

in all, as an estimate of the minimum possible oxygen consumption for a pigeon in
continuous horizontal flight. At the maximum-range speed the figure would be
168 ml./min. There is little doubt that pigeons can fly continuously at this speed, as
Michener & Walcott (1967) record cruising speeds ranging from 13 to 18 m./sec. in
different homing pigeons, so the above argument, if correct, implies that pigeons are
capable of absorbing oxygen continuously at a rate of 170 ml./min. or so.

There is equally little doubt that pigeons are not able to remain in oxygen balance
while hovering. They can hover for a few seconds, but presumably rely on the white
fibres of the pectoralis to do this (George & Berger, 1966), and incur an oxygen debt.

It follows that the maximum power which a pigeon can produce without incurring
an oxygen debt must lie somewhere between that required to cruise at the maximum-
range speed and that required to hover, and this defines a speed range (with a lower as
well as an upper limit) over which continuous flight is possible. For instance, if 16 m.|
sec. is assumed to be the upper limit, one can draw a horizontal line at about 10-5 W.

35-2
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in Fig. 12 representing the maximum continuous power output. The pigeon would
then be able to fly in oxygen balance at speeds between 3 and 16 m./sec., but would
incur an oxygen debt at both lower and higher speeds.

Maximum power

To complete the diagram, one also needs to know the maximum power which the
pigeon can achieve in short bursts of activity, for instance at take-off. An estimate of
this maximum power can be made from Pennycuick & Parker’s (1966) observation
that pigeons can climb vertically at 250 cm./sec. when forced to take off close to an
obstacle. Five observations of steep or vertical take-off on the high-speed film yielded
flapping frequencies ranging from g-1 to 9-7/sec., averaging 9-4/sec., and the sweep
angle was taken to be 284°, the maximum anatomically possible. The power required
for vertical climb was then calculated in the same way as was done earlier for horizontal
flight.

Profile power worked out to be 5-6 W., and parasite power was o-05 W. Induced
power (4.9 W.) was considerably less than in hovering (8:4 W.), because the vertical
climbing velocity increases the mass flow of air through the wing disk, thus reducing
the induced velocity needed to maintain the required rate of change of momentum.
The climbing power (product of weight and vertical velocity) was 9-8 W., and the total
power required 20-4 W., or nearly twice the maximum continuous power. In the case
of the pigeon it is no surprise to find a large difference between maximum power and
maximum continuous power, since the work of J. C. George and co-workers (re-
viewed by George & Berger, 1966) has shown that a large part of the pigeon’s flight
muscle is specialized for intermittent anaerobic operation. The ratio of these two
powers would, however, be expected to vary widely in different flying animals.

Structural considerations
(a) Air loads
If the pectoralis applies a moment M to the humerus during the downstroke, and
rotates the wing at an angular velocity w, the total power output (for both wings) is

P = 2Muw.

Since all the work is assumed to be done on the downstroke, and none on the upstroke
however, the average power is half of this. If P and o have been calculated, M can be
estimated as

= —, (28)

Average values for M at different speeds, calculated from equation (28), are plotted
against speed in Fig. 15.

A maximum value for M, averaging 10-2 kg. wt. cm., was found by Pennycuick &
Parker (1966) by measuring the ultimate strength of the pectoralis insertion. A mini-
mum value can be obtained by assuming that during the downstroke the wing must
support at least half the weight, or 200 g. wt. for a 400 g. wt. pigeon. The position of
the centre of lift of the wing in gliding (which would be much the same as in fast
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flapping flight) was estimated by Pennycuick (1967) to be 143 cm. from the centre
of rotation of the shoulder joint, giving a minimum possible moment of 2-g kg. wt. cm.
These upper and lower limits are marked in Fig. 15.

(b) Inertial loads

It might be thought that the work done in imparting angular kinetic energy to the
wing at the beginning of each downstroke and each upstroke should have been con-
sidered in the power calculation. This energy is, however, recoverable, since the wing
can be slowed by aerodynamic forces at the end of the stroke, and its kinetic energy
can, in principle, be transferred to the air. The power needed to oscillate the wing is
thus included in induced and profile power, and need not be considered separately—
in contrast to the case of a walking mammal, for instance, in which the biggest com-
ponent of power is that needed to oscillate the legs.

11F
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Fig. 15. Calculated average moment exerted by the pectoralis in the downstroke of horizontal
flight in the pigeon. The upper horizontal line represents the ultimate moment sufficient to
break the pectoralis insertion, and the lower line is the minimum needed to balance the bird’s
weight,

When the forces applied to the structure are considered, the moments needed to
accelerate the wings must be taken into account. In order to obtain some idea of the
magnitude of these moments, the moment of inertia of a pigeon’s wing was estimated
as follows.

A wing was removed at the shoulder joint from a pigeon which had been killed the
previous day, frozen, and partially thawed: it was set up in the fully extended position,
and re-frozen. It was then cut into sixteen strips, by chordwise cuts made with a
photographic guillotine, and each strip was weighed. The spanwise distance between
successive cuts was 2 cm., and the centres of mass of the strips were taken to be 1, 3,
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5, etc., cm. from the centre of rotation of the shoulder joint. The moment of inertia 1
of the wing was calculated from the formula
i=16

I= 'El r'iznlis (29)
where r;, m; are the flapping radius and mass respectively of strip i. The mass of the
wing was 24°3 g., and its moment of inertia was estimated as 1830 g. cm.2,

The greatest inertial loads would presumably occur in vertical climbing, where
both sweep angle and flapping frequency are maximal. If it is assumed that the wing
sweeps through its full travel (142° for one wing) in half a cycle, then at a flapping

861° 66° 814°

(@) ®)

(©)

Fig. 16. Average travel of the wing above and below horizontal, in a pigeon flying horizontally
at different speeds. (a) Speed 7-8 m./[sec., flapping frequency 6-20/sec. (b) 9'2 m./sec., 6:00/sec.
(c) 18-0 m./sec., 5°57/sec.

frequency of g-4/sec. the average angular velocity would be 47 radians/sec. As the
whole downstroke would last 53 msec., one could hardly assign more than 15 msec.
for acceleration of the wing, giving an angular acceleration & of at least 3.1 x 10%
radians/sec.?. The moment M required to produce this is

M = Io = 57 x10° dyne cm. = 5-8 kg. wt. cm.

The moment due to air loads in vertical climbing is estimated as 4-5 kg. wt. cm., so
that if the ultimate moment which the pectoralis can carry is 10-2 kg. wt. cm., it
would seem that the pectoralis could support either the air loads in vertical climbing
or the inertial loads, but not both simultaneously. It seems most likely that the wing
is first accelerated from the fully ‘up’ position at low or zero angle of attack, so that
the air loads are initially small, and that once the angular velocity has reached its full
value, the angle of attack is increased, and the air loads are allowed to develop.

This idea is supported by the fact that the wings are always raised farther above the
horizontal position on the upstroke than they are depressed below it on the down-
stroke—in maximal flapping the wings are clapped togtether above the back, but the
humeri are only depressed some 45° below the mid-point on the downstroke. The
point is illustrated in Fig. 16, which is derived from the experiment described on
page 528, and shows the average angular excursion of the wing in horizontal flight at
various speeds. There would seem little aerodynamical advantage in raising the wings.
farther than they are lowered, and probably the early part of the downstroke is used
mainly or solely for accelerating the wing.
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Structural safety factor

The ratio of the ultimate moment, sufficient to break the pectoralis insertion, to
the maximum moment likely to be developed in flight may be defined as the ‘struc-
tural safety factor’ of the pectoralis insertion. It is estimated as 1-6 at the maximum
range speed, and 2-3 in vertical climbing. This may be compared with Machin &
Pringle’s (1959) estimate that the tensile stress needed to tear the flight muscles of the
beetle Oryctes rhinoceros is about 1-g times the maximum stress developed in flight.

DISCUSSION
Variation of the power curve

The general U-shape of the power-versus-speed curve of Fig. 12 probably applies
to all flying animals, but the high-power portions at the two ends are caused by dif-
ferent factors, and are to some extent independent. The high power needed in
hovering and at low speeds is due to the induced component, which can be reduced
by reducing the disk loading. Thus animals specialized for hovering can economize
on induced power (at the expense of high-speed performance) by evolving long wings,
which may be the explanation of Greenewalt’s (1962) observation that the larger
hummingbirds have disproportionately long wings as compared to the smaller ones.

The rise in the power curve at high speeds, on the other hand, is mainly due to the
drag of the body, though wing-profile power (Py,,,) also contributes to it: it can be
delayed to some extent by better streamlining of the body, and also by reduction of
wing area.

In an attempt to make a comparison with an entirely different bird, a power curve
was calculated for the ruby-throated hummingbird Archilochus colubris, by the same
method as was used for the pigeon. The data required in the computer program
were obtained from figures and drawings given by Greenewalt (1961, 1962), and are
listed in the appendix. The results are plotted in Fig. 17. The maximum power line
has been drawn to give the maximum level speed of 11-5 m./sec., recorded by Greene-
walt (1961) for this species, and the maximum continuous power must lie between
this and the hovering power (p. 550).

The best effective lift: drag ratio is estimated to be only 4-1 for this bird, but this
corresponds to a range of 894 km./g. fat, achieved at g m./sec. (20 m.p.h.). If, as
Lasiewski (1962) says, the bird can carry 2 g. of fat, it should be able to cross the Gulf
of Mexico with a large safety margin, and the trip would take 25 hr. in no wind. The
low speed at which maximum range is obtained, however, means that a headwind
of only 4:5 m./sec. (10 m.p.h.) would double the time for the crossing and use up the
fuel reserve, and from this point of view a long sea crossing is safer for a large bird
which can cruise at a higher speed. As explained on page 541, the larger bird has no
advantage in air range as such, by virtue of its size. The implications of the present
study for the theory of bird migration are developed further by Pennycuick (1969).

Lift coefficient
The maximum estimated value of lift coefficient for the pigeon is 278 and occurs
in hovering. The maximum value of 2-15 calculated for the ruby-throated humming-
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bird occurs at 1-5 m.[sec., and is somewhat higher than the hovering value (1-86). The
general similarity of the range of estimated lift coefficients in the two species can be
seen from Fig. 18.

g

E

£

. - 900

£ 4-

]

c - 800

L]

>

Ie) E - 700

20 vo 3 5

e =

2 165 Fsoo &
a; E 2 [
g 14 Y 25 2
8 £ 400 §

12" ~

10 - 300

1-
0

Airspeed (m.[sec.)

Fig. 17. Power calculation as Fig. 12, for the ruby-throated hummingbird Archilochus
colubris. The calculation is based on data listed in the appendix, and derived from Greenewalt
(1961, 1962). P;, Induced power; Py, profile power; Py, parasite power; P, total power
(power scale at left, corresponding oxygen consumption scale at right). (L/D)y, effective
lift: drag ratio (scale at far right, with corresponding range scale).
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Fig. 18. Calculated lift coefficient in horizontal flight for the pigeon (solid line) and
ruby-throated hummingbird (dotted line), plotted against forward speed.
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Application to animals of different size

Although the general U-shape of the power curve of Figs. 12 and 17 is likely to
apply to all flying animals (as it does to helicopters), one would expect the relationships
of the maximum, and maximum continuous, power levels to the curve to vary in a
systematic way in animals of different size. The power required to fly and the power
available from the muscles vary in different ways with the size of the animal, and the
nature of the general trend can be deduced from a simple dimensional argument.

Effect of size on power required

In geometrically similar animals the weight W is proportional to the cube of any
representative length, which can be expressed by the proportionality

W oc BB (30)
Similarly, any surface area, such as the wing-area S, is proportional to length
squared: S o I (31)

Greenewalt’s (1962) fig. 3 shows that these relations are broadly obeyed throughout
the entire range of flying animals (‘ gnat to condor’), and although there is some scatter,
very large departures from the general trend are mechanically impracticable. It is
broadly true that in flying animals of different size the wing-loading, W/S, is pro-
portional to length, since W B

SEE= L (32)

Now any representative speed V on the curve of Fig. 12, such as the minimum-
power speed or the maximum-range speed, will normally occur at a particular lift
coefficient, and will therefore vary in proportion to the square root of the wing-

loading:
V A/ (v_;/) o I, (33)

Referring to the simple representation of powered flight shown in Fig. 14, and
assuming a constant lift:drag ratio, the thrust T required is proportional to the

weight: T o Wa P (34)
and the power required P, is
P =TV oc Bxl} = 36 oc W5, 35)

The power required for any particular state of flight increases approximately with
the 1-17 power of the weight, because larger animals in general have higher wing-
loadings, and are therefore obliged to fly faster. This argument is well known in
aeronautics, and is given in connexion with birds by Wilkie (1959).

Effect of size on power available
Greenewalt (1962) found that the mass of the pectoralis plus supracoracoideus
muscles is about 179, of the body weight in birds of any size (except in humming-
birds, which have relatively more flight muscle), so the mass of the flight muscles
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may be taken as proportional to the body weight. The work done, Q, per contraction
by a muscle of given type is proportional to the mass of the muscle, regardless of its

shape (Hill, 1950). 0 « B. (36)

The contraction frequency F is inversely proportional to length—Ilarge animals are
obliged to oscillate their limbs at a lower frequency than small ones, for the structural
reasons given by Hill (1950).

Foc (37)
The power output P, is the product of the work done per contraction and the con-
traction frequency, so that P, = OF « I (38)

At this level of argument the power available P, is considered in a general way
without making the distinction explained on page 553 between maximum power
available and maximum power continuously available. As in non-flying animals, P,
is more nearly proportional to surface area than to mass or volume.

If the logarithms of P, and P, are plotted against the logarithm of the weight for
flying animals of different size, the slope of the former line should be 2/3, and that
of the latter 7/6 (Fig. 19). Even allowing for the rather vague nature of the above
argument, the difference between these two slopes is so large that there is bound to
be a sharp upper limit to the size of practicable flying animals. In practice the limit
of mass for flying birds seems to be in the region of 12 kg. (with the crop empty), and
is attained by some species of at laest three different orders—examples are the Kori
bustard Ardeotis kori, the California condor Gymnogyps californianus and the trumpeter
swan Cygnus cygnus.

General performance limitations

Figure 20 illustrates the way in which the differing relationship of the maximum
power available, P,,,, and the maximum power continuously available, P, to the
power required, P,, determines the general flight capabilities of four different-sized
birds.

In the case of hummingbirds (Trochilidae), whose mass ranges from 2 to 20 g., it
seems that sufficient power is available for hovering without incurring an oxygen
debt—Lasiewski (1963) records a specimen of Calypte costae hovering continuously
for so min. The P, line may therefore be drawn in above the hovering power
(Fig. 20b), and the P,,, line somewhat higher. The pigeon Columba livia (mass 400 g.)
is an intermediate case in that the P, line falls between the minimum power required
(trough of curve) and the hovering power, whereas P,,, is well above the hovering
power. The pigeon is thus able to jump straight into the air on take-off and can climb
vertically for perhaps a second if necessary, but it cannot fly continuously more
slowly than about 3 m./sec. (Fig. 20a).

Turning now to very large birds, the larger African vultures (mass 5-7 kg.), such as
the lappet-faced vulture Torgos tracheliotus and the white-backed vulture Pseudogyps
africanus, cannot hover even briefly, but they can fly horizontally for short periods,
possibly for 5 min. Thus both P, and P,, must lie between the minimum power
required and the hovering power (Fig. 20¢). It would appear from the account of
Koford (1953) that the even larger California condor (mass up to 12 kg.) is probably
not capable of continuous horizontal flight at all, and relies exclusively on soaring for
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protracted flight, flapping its wings only on take-off or in emergencies. If this is so, its
P,,, would lie above the trough of the power required curve, but P,, would lie below it
(Fig. 20d).

Log P——>

12 kg.
Log W——

Fig. 19. Double logarithmic plot of power required (P,) and power available (P,) against weight
for geometrically similar flying animals of different size.

%
N\

Power——

© @

Speed——

Fig. 20. Power curves as in Fig. 12 and Fig. 17 for (a) pigeon, (b)) hummingbird, (c) white-
backed vulture, and (d) California condor (not to scale). The upper horizontal line represents
maximum power available, the lower one maximum power continuously available. The vertical
dotted lines in (c) and (d) represent take-off speed.

Take-off

It follows from diagrams of the type shown in Fig. 2oc¢, d that large birds cannot
jump into the air from flat ground like a pigeon, but must accelerate horizontally to a
speed Vp,y,, marked by the vertical dotted lines, at which they have sufficient power to
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maintain horizontal flight. If the bird takes off against a wind blowing at V,, or
faster, it can, of course, become airborne at once, but in still air, on flat ground, ¥,
must be attained by running.

The heavier the bird, and the higher its wing-loading, the greater is V;;,. Maximum
running speed, however, does not increase noticeably with increasing size, and Hill
(1950) showed that for geometrically similar animals running speed should be in-
dependent of size. Thus there must be a size of bird whose maximum running speed
would be insufficient to accelerate it to ¥V, and which could not, therefore, take off
in no wind from flat ground, and it is possible that this factor places an upper limit
on the size and/or wing-loading of large flying birds which inhabit flat country. An
alternative method of taking off, which is normally available to mountain birds like
the California condor, is to jump off some eminence, which avoids the need for a
take-off run. It may be noted that birds are the only flying vertebrates which have
ever been able to take off by running over the ground; in both bats and pterosaurs the
legs are (or were) modified as part of the wing structure, and thereby rendered
unsuitable for bipedal running. The larger members of these groups could therefore
only take off by diving from a tree or hill.

General performance standards

The general level of performance measured or deduced for the pigeon is extremely
poor by aeronautical engineering standards. Wing-profile drag coefficients ranging
from o-or to 054 are deplorably high, as is the body-drag coefficient of 0-43, and the
resulting estimate of about 6 for the best effective lift: drag ratio is far from impressive.
However, these figures lead to entirely plausible estimates of the pigeon’s general
flight capabilities, and there is no reason at present to doubt that its performance is
indeed as poor as has been suggested. This is strongly supported by the very similar
estimates of effective lift: drag ratio deduced from the measurements of Nisbet et al.
(1963) and Tucker (1968), using different species and radically different methods
(p- 542). The above calculation for the ruby-throated hummingbird confirms the
same general impression.

The performance of model aircraft, operating in the same range of Reynolds
numbers (20,000-300,000) as the birds mentioned here, is also very poor by com-
parison with that of full-scale aircraft. The latter mostly operate at Reynolds numbers
of 1 million upwards, at which it is usually possible to keep the boundary layer laminar
over a substantial fraction of the wing surface. Following the advice of Schmitz (1960),
who investigated the behaviour of a number of aerofoil sections at low Reynolds
numbers, aeromodellers commonly glue sandpaper or thread along the leading edge
of their models’ wings, which ensures that the boundary layer is turbulent all over,
since only in this case (at low Reynolds numbers) will the boundary layer remain
attached to the wing surface over a useful range of angles of attack. The performance
estimates for birds given here are consistent with the idea that they, too, maintain a
fully turbulent boundary layer over the whole wing at all times, doubtless for the same
reason.
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SUMMARY

1. Certain measurements made on pigeons flying horizontally in a wind-tunnel are
described.

2. A method, based on helicopter theory, for calculating the power required to fly
at any given speed is explained. Induced, profile and parasite power are calculated
separately.

3. Itis concluded that the pigeon can fly horizontally without incurring an oxygen
debt at speeds from 3 to 16 m./sec. The minimum power speed is 8—9 m./sec. The
maximum continuous power output is estimated to be 10:5 W, and the corresponding
oxygen consumption about 170 ml./min. The maximum (sprint) power is estimated to
be 20-4 W., from observations of vertical climb after take-off.

4. The estimated best lift: drag ratio in horizontal flight is 5-9, giving a range of
11-8 km./g. of fat oxidized for a 400 g. pigeon.

5. It is argued from considerations of structural strength that the early part of the
downstroke is used mainly to impart angular velocity to the wing, and that air loads
are only developed after most of the angular acceleration has taken place. The tension
in the pectoralis insertion may exceed 609, of the breaking tension in fast horizontal
flight.

6. The power calculation was repeated for the ruby-throated hummingbird, using
published data. Estimated best range is about goo km./g. of fat oxidized, achieved at
9 m./sec. The corresponding effective lift: drag ratio is 4-1.

~. The variation of power required and power available with size is considered, and
the effect on hovering and take-off performance of different birds deduced.

8. Performance estimates for the pigeon and ruby-throated hummingbird are very
poor by engineering standards, but consistent with these birds’ known abilities, and
are in general agreement with estimates of effective lift:drag ratio derived from
published data on other species.

In addition to those to whom my thanks are acknowledged in the preceding paper,
I am most grateful to Dr L. C. Strong for carrying out the Soxhlet extraction men-
tioned on page 54I.
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APPENDIX

The following data were used in the power calculations for the pigeon and ruby-
throated hummingbird.

Columba livia Archilochus colubris
Weight (g. wt.) 400 37
Disk area (cm.?) 3500 72
Air density (g. cm.™3) 122X 107% 1'22 X 107%
Flapping frequency (sec.™!) See Fig. 4 52
Inclination of flapping See Fig. 6 o in hovering
plane (degrees) 57 at 3-84 m./sec.
78 at 11°6 m./sec.
Sweep angle (degrees) See Fig. 3 233 in hovering

131 at 3:84 m./sec.
160 at 11-6 m.[sec.

Body frontal area (cm.?) 36 16
Body drag coefficient 043 043
Wing profile drag coefficient See Fig. 11 See Fig. 11

Wing strip areas and flapping radi

Columba livia Archilochus colubris
r Al s A Il
Flapping Flapping
Strip Area (cm.%) radius (cm.) Strip Area (cm.?) radius (cm.)
1 12°0 1 1 ) o1t
2 12°6 2 2 023 0'33
3 12:8 3 3 031 055
4 128 4 4 032 076
5 12°8 5 5 032 098
6 12°8 6 6 033 1°20
7 12-8 7 7 033 1'42
8 130 8 8 032 1-63
9 133 9 9 032 1-85
10 13°4 10 10 032 207
11 13°3 11 11 031 229
12 13°2 12 12 031 2-51
13 129 13 13 030 273
14 133 14 14 029 294
15 13'5 15 15 027 316
16 131 16 16 026 338
17 130 17 17 023 3-60
18 12°2 18 18 024 3-81
19 12°4 19 19 023 403
20 12'0 20 20 019 425
21 115 21 21 012 447
22 11°4 22 22 o006 469
23 106 23
24 10°5 24
25 9'5 25
26 91 26
27 78 27
28 72 28
29 61 29
30 46 30
3r 37 3t

32 24 32



