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FLIGHT IN DROSOPHILA

II. VARIATIONS IN STROKE PARAMETERS AND WING CONTOUR

BY STEVEN VOGEL

Biological Laboratories, Harvard University, Cambridge, Massachusetts*

INTRODUCTION

In the preceding paper (Vogel, 1966), the capabilities of fruit-flies as flying machines
were determined in so far as tethered animals could be induced to demonstrate them.
The angle between the long axis of the body and the oncoming wind (body angle)
appeared to be the major variable establishing the direction of the resultant of lift
and thrust under conditions where variations in most stroke parameters were ex-
cluded. Yet the parameters considered were not all invariable; indeed, enforcing a
constant wing stroke was possible only by setting aside the large number of perfor-
mances in which these stroke parameters varied. Moreover, one potentially crucial
factor, the angles of attack of the wings, was not measured. •

In the study reported here, the body angle was fixed and variations in other para-
meters were recorded as the flies, so to speak, manipulated their own controls. Thus
information was obtained showing, within the constraints of the experimental situa-
tion, which stroke parameters were fixed, which variable, and the interrelationships
among the latter. In addition, details of the configuration of the wings during the
stroke were recorded to assess the magnitude and importance of variations in angle of
attack and in the topography of the wing surfaces.

MATERIAL

Drosophila virilis, reared and tethered as previously described (Vogel, 1966), were
used throughout.

METHODS

1. Performance and measurements of stroke parameters

Body angle, speed, lift, thrust, and the stroke parameters stroke angle, stroke-plane
angle, frequency, and the extreme wing positions were defined and determined as
previously described (Vogel, 1966; Vogel & Chapman, 1966). Body angle was fixed
at a single value for all measurements on each individual fly, and performances were
selected in which lift and air speed varied erratically. Thus the flight performances
were not' successful' by the criteria formerly applied. As many sets of observations as
possible were made of each performance before the animal became completely un-
dependable. The use of manual null-balancing techniques for gauging lift and air
speed and the slight delay between these adjustments and photographic recording of
the wing-stroke imposed serious limitations on accuracy in these erratic performances.

* Present address: Department of Zoology, Duke University, Durham, North Carolina 27706.
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2. Wing pitch and surface contour

Flies were mounted in the working section of the wind tunnel at body angles of
about io°. The camera, equipped as for the performance measurements, was positioned
in front of and about 400 above each specimen; it was focused approximately parallel
to the plane of vibration of the wings. Exposures were taken by opening the shutter,
triggering a single flash of about 1 /tsec. in duration from a General Radio Co.
'Strobotac', and then closing the shutter. Consequently, these exposures photo-
graphed the wings at random points during the stroke. Because the downstroke
occupies more time than the upstroke, about two-thirds of the exposures occurred
during downstroke, making this phase more satisfactory for analysis.

Since most flies performed poorly in still air after fixed flight in moving air, photo-
graphs were first taken in still air and then with the tunnel in operation. In animals
where the stroke angle appeared to be maximal in still air eighteen exposures were
made in as rapid succession as possible (about one per 5 sec). The tunnel was then
adjusted to an air speed of 2oocm./sec.—approximately the preferred flyingspeed—and
another eighteen photographs were taken.

These photographs permitted direct observation of the presence or absence of wing
twisting and camber. Wing pitch was measured in the following manner. On each
photograph the apparent width of the wing was measured at the point of maximum
width, conveniently marked by the distal cross-vein. The sine of the inclination of
this part of the wing to the camera axis is then given by the apparent width (corrected
to scale) divided by the actual width. The camera axis thus set an arbitrary zero above
which wing pitch was expressed. The position of the wing was determined as the
angle between the long axis of the wing and the long axis of the body as these projected
onto the photographs, with the top of the stroke scored as o°. From these data wing
pitch was plotted as a function of the position of the wing with respect to the body
during upstroke and downstroke and for air speeds of o and 200 cm./sec.

To observe changes in wing configuration at specific points of the stroke cycle the
arrangement just described was modified to enable the flies themselves to trigger the
flash. Connecting a fly by its tether to the needle of a gramophone cartridge gave an
electrical signal whose fundamental frequency was identical to the wingbeat frequency
(Roeder, 1951). With appropriate circuitry (including a time delay) this signal could
trigger either single flashes of the ' Strobotac' for photography of single points in the
stroke or repetitive flashes at the wing-beat frequency for visual observations. This
system was usable to air speeds of about 150 cm./sec.; at higher speeds wind on the
fly and tethering wire generated spurious signals, and the synchronization of strobo-
scope and wing-beat was undependable.

RESULTS

1. Variations of the stroke parameters in erratic performances

Five Drosophila showed enough variability of output to permit correlation of the
magnitude and direction of total force with stroke parameters other than angle of
attack. For each of these performances an average of 23 sets of observations were made.
Despite considerable scatter in the measurements all flies were qualitatively similar in
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performance, and the overall picture is consistent with the results previously obtained
from steady fliers (Vogel, 1966).

Text-fig. 1 shows the variation in the coordinates of the upper and lower extreme
wing positions with stroke angle for a typical performance. The lower position varies
far more than the upper; moreover, this shift in lower position comes principally from
displacement of the latitudinal (horizontal) component. The immediate result is that a
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Text-fig, i. ' Spontaneous' variation in the co-ordinates of the extreme wing positions and in
stroke angle. Lt, latitudinal (horizontal); and A(, longitudinal (vertical) co-ordinates of upper
position. Lb and A6, corresponding co-ordinates of lower position. Curves fitted by eye.

change in stroke angle is concomitant with a shift in the plane of the stroke, as illu-
strated in Text-fig. 2. Reduction in the stroke angle from its maximum value shifts
the stroke plane to a more nearly vertical position and, as one would anticipate in the
absence of other important factors, reduces lift more than thrust. This severe depen-
dence of lift on stroke angle, particularly at near-maximal stroke angles (Text-fig. 3)
explains the greater variability of lift than flying speed in the unaveraged performance
data. The stroke plane was never observed to vary independently of the stroke angle;
in these fruit-flies the stroke angle, stroke plane, and extreme positions of the wings
appear functionally locked together. Changes in this set of mutually dependent para-
meters affect both the magnitude and direction of the force output.

In no case did wing-beat frequency vary by more than ± 10 % of the average value
despite drastic changes of body angle, flying speed and stroke angle. The only noticeable
trends were (1) a tendency for frequency to decline with time during an experiment,
and (2) a drop in frequency at very low flying speeds. Only one fly exhibited frequency
changes at a single body angle without large alterations of other stroke parameters.
Fourteen sets of observations on this animal, held at a body angle of 190, indicated that
lift and thrust were roughly proportional to the square of frequency.

Occasionally differences were noted in the stroke angles of the two wings. Such
side-to-side variance could be deliberately evoked by shining a light on one side of the



386 STEVEN VOGEL

fly, whereupon the positively phototactic animal increased the stroke angle (and
decreased the stroke-plane angle) on the side opposite the light. In an unrestrained
specimen the increase in contralateral thrust would have turned the insect toward
the light. The accompanying, larger increase in lift would then 'automatically'
provide a banked turn.
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Text-fig. 2. Mercator projection of the co-ordinates of the extreme wing positions for four
different stroke angles. Corresponding upper and lower positions are joined by straight lines;
next to each are the values of the stroke angles and stroke-plane angles. Data from fitted
curves of Text-fig, i.

2. Wing surface contour

From the stroke photographs of PL i, several points may be noted. The fly wing
does not twist along its length to any appreciable extent: changes in wing pitch during
the stroke are based on lengthwise rotation of the wing as a whole rather than on
twisting. For either a reciprocating insect wing or a rotating propeller on a moving
aircraft, the local wind direction varies along the length of the blade. Thus a constant
angle of attack can be maintained only by a lengthwise twist of the wing or propeller.
Consequently, except at the extreme positions of the stroke and at zero air speed, the
angle of attack of the fly wing must vary along its length.

During most of the stroke the wing is held flat, with a cambered profile appearing
only in the lower two-thirds of the downstroke. Lengthwise bending (as opposed to
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twisting) is observed near the wing base. Both the camber and lengthwise bending are
in the opposite direction from that expected for passive deformations caused by the
relative wind. Altering the air speed (PI. 2) causes no change in the surface contour of
the wing; however, a slight posterior shift of the stroke plane was regularly observed
as the air speed was increased.
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Text-fig. 3. The variation of thrust and lift with changes in stroke angle for the same fly
considered in Text-figs, i and 2, held at a body angle of 12°.

3. Wing pitch and flying speed

At the distal cross-vein and mid-downstroke the wings move, relative to the body,
at about 200 cm./sec. If the animal is stationary, the characteristics of its wing-beat
establish both magnitude and direction of the wind on the wings. Addition of a 200
cm./sec. forward velocity alters both magnitude and direction of this relative wind;
if the angle of attack is to be maintained at a fixed value for a particular point on the
wing and a particular position during the stroke, wing pitch must vary with flying
speed. Text-fig. 4 is a typical plot of wing position versus pitch, showing that the
pitch of the wings is not significantly different at the two air speeds representing the
extremes of normal flight. Similarly, in PI. 2, pitch appears constant as air speed is
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varied. Thus the angle of attack must vary inversely with flying speed and advance
ratio; the fruit-fly does not employ a variable-pitch propeller in any conventional
sense.

20° 60° 80°

Wing position

100° 120° 140° 160°

Text-fig. 4. Wing pitch versus angular wing position for downstroke of a tethered fly in (O)
still air, and (#) a 200 cm/sec wind. Data from photographs similar to those of PI. 1.

DISCUSSION

1. Wing-beat frequency

The frequency of wing-beat is the most widely investigated feature of insect flight,
and the genus Drosophila has been accorded particular attention in studies concerned
primarily with frequency (Chadwick, 1953). However, wing-beat frequency did not
prove to be of especial interest in the present study. In successful performances fre-
quency varies only slightly. Such variations as occur seem random and independent
of shifts in other stroke parameters. Lift and thrust appear proportional to the second
power of frequency, just as thrust is proportional to the square of revolution rate in
aircraft propellers. Most likely the slight variation of frequency and its consequent
elimination as an important parameter of control reflect a limitation imposed by the
free-running nature of the asynchronous flight musculature (Roeder, 1951).

The relationship between frequency and such parameters as air density may be
explained by considering the wings as mechanical oscillators, their effective mass in-
cluding a fraction of' boundary layer mass' (Vogel, 1962). This same argument predicts
that frequency should rise with increases in either stroke angle or flying speed, since
either increase should reduce the moment of inertia of the boundary layer. But the
magnitude of the expected changes is too small to have an appreciable effect on force
output or to be significant above the random frequency variations present in all the
performance measurements.
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2. Stroke angle and stroke plane

Of the four co-ordinates which describe the extreme upper and lower positions of
the wing only the latitudinal co-ordinate of the lower position varies greatly with changes
in stroke angle. This is consistent with the observations of Hollick (1940) on Muscina
as well as those of Chadwick (1951) on Drosophila. Thus the immediate consequence—
the functional interdependence of stroke angle and stroke plane—may be widespread
in functionally two-winged insects. Conversely, the wing stroke in Drosophila shows
little variation with changes in body angle or flying speed, by contrast with other
diptera {Muscina, Hollick, 1940; Phormia, Nachtigall, 1966).

The interaction of stroke angle and stroke plane, even if widespread, is clearly not a
general feature of the flight of insects. Weis-Fogh (1956) found in locusts only a slight
variation of stroke angle in performances encompassing a wide range of average lift
as well as changes in the stroke plane which were not simple mechanical consequences
of changes in other stroke parameters. Such adjustment of the plane of vibration of the
wings with respect to the body appears to be an important control mechanism in bees
(Stellwaag, 1916), in wasps (Chadwick and Edgerton, cited by Chadwick, 1953), and
in locusts (Gettrup & Wilson, 1964).

3. Angle of attack

Fruit-flies exhibit a remarkable indifference to the precise adjustment of angle of
attack in the face of changes in other flight parameters. For any given position during
the stroke, wing pitch remains fixed, presumably set by the characteristics of the wing
articulation. Since pitch does not vary with flying speed, angle of attack must; since
pitch does not vary along the length of the wing, again angle of attack must.

This situation contrasts sharply with that encountered in all previously studied
animals, both insect and vertebrate, as well as with man-made aircraft. Larger flies,
(Nachtigall, 1966) and locusts (Weis-Fogh, 1956) adjust wing pitch during each stroke
by lengthwise twisting rather than rotation; similarly, aircraft propellers are shaped
like strongly twisted wings. Both locusts (Gettrup & Wilson, 1964) and humming-
birds (Greenewalt, i960) use pitch adjustments in the control of flight in a manner
analogous to the use of variable-pitch propellers in aircraft, although the animals,
with flexible wings, can change the lengthwise twist of the wings rather than being
forced to rotate the wing as a whole.

The absence of active control of angle of attack undoubtedly effects significant
simplifications in the flight machinery. The pitch changes during the course of each
wing stroke may be due entirely to fixed structural characteristics of the articulation
since their magnitude and phase are fixed. Furthermore, wing rotation need involve
adjustments only at the articulation. By contrast, lengthwise twisting of the wings
must be effected by forces applied at the articulation and transmitted by the veins over
the entire surface. Although fruit-flies do make use of active alterations of the surface
topography of the wings (such as camber during downstroke), they do so to a much less
dramatic degree than do larger insects or birds. Perhaps the reduced venation seen in
the wings of small insects partly reflects the absence of major adjustments in wing
contour during flight.
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4. The control of flight

The qualitative description of the use of the various stroke parameters for control
appears straightforward. Wingbeat frequency varies but little. Wing pitch is fixed and
thus angle of attack varies only through changes in the local wind direction. The
surface topography of the wings does not change with flying speed, either actively or
through passive deformations. The stroke-plane and extreme positions of the wings
are locked to the stroke angle, while lengthwise wing twisting is negligible. Conse-
quently the possible avenues of control are rather limited. Body angle seems to be the
primary regulator of the direction of the output force and thus the ratio of lift to
thrust (Vogel, 1966). Stroke angle is the main regulator of the magnitude of the output
force; in addition, through its relationship with the stroke plane, the stroke angle
influences the ratio between lift and thrust.

The suggestion that body angle is a major controlling parameter raises a crucial
question—how does the fly adjust the body angle? Control of stroke angle, stroke
plane, or wing rotation is easily envisaged, for one body part is merely moved with
respect to another. But changing body angle requires an aerodynamic mechanism to
produce a turning moment about the centre of gravity. Four-winged insects could
conceivably generate the necessary pitching torque through control of the relative
output of the two pairs of wings. The halteres of the Diptera are ruled out by Pringle's
(1957) reminder that their mass is much too low for them to have any direct gyroscopic
effect.

Body angle might be controlled through changes in the line of action of the resultant
force which the wings exert on the body. Hollick (1940) noted that in moving air an
increase in stroke angle is associated with a forward displacement of the line of action
of lift and thrust. This probably occurs through the stroke angle-stroke plane inter-
relationship described here. But, regardless of its detailed mechanism, moving the
resultant anteriorly will elevate the head and increase body angle. One attraction of
this scheme is that a fly, beating its wings at maximum stroke angle, would climb
steeply. Indeed, this is what one commonly observes, either visually or in stroboscopic
pictures of free flight of frightened flies. However, variation of stroke angle is un-
likely to be the sole means of control of body angle. If this were so, stroke angle would
determine both magnitude and direction of output. Another degree of freedom seems
essential.

A second method for controlling body angle might entail use of the hind legs as
'elevators'. The extended position of the hind legs in flight posture has already been
noted (Vogel, 1966; also see PI. 2). Not only are they directed posteriorly, but, unlike
the pro- and mesothoracic legs, they are not held tightly against the body. The hind
tarsi may point in any direction from straight back to fully dorsad; velocity maps
indicate that they are well exposed to the induced wind from the wings. Hence the
metathoracic legs could be effective even during hovering through an arrangement
suggestively similar to mounting a ship's rudder behind its propeller to improve low-
speed control. Hollick (1940) mentions that, when the stroke angle differs on the two
sides, the hind leg on the side of lower stroke angle extends further laterally. This
clearly suggests an aerodynamic function for the hind legs. Moreover, many small
insects are endowed with bristles, bulges, or pubescence on the hind legs with no such
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accoutrements on the first two pair. But, as with the stroke angle, the use of the hind
legs as elevators is not likely to be the sole mechanism for the control of body angle;
after removal of these legs, fruit flies are able to take off and fly in seemingly normal
fashion.

Chadwick's (1953) suggestion of a homeostatic control of aerodynamic power out-
put in Drosophila finds little support in the present study. Chadwick's own evidence
is mostly negative and involves rather small changes in flight parameters, at least some
of which can be more easily explained in simple physical terms (Vogel, 1962). The
present measurements show neither constancy of lift nor of power output, not do they
present any compelling argument why flies should have constant 'efficiency' or a
homeostatic system to distribute imposed stresses among the various flight para-
meters. Instead they suggest (by comparison with the extensive literature on locust
flight) that the evolution of small insects such as Drosophila has involved a reduction
in the number of parameters which vary at all, either actively or passively, as the flight
pattern changes.

SUMMARY

1. In tethered flight in a wind tunnel fruit-flies adjust lift and thrust by shifting the
horizontal component of the lower extreme wing position. The upper extreme wing
position is nearly constant.

2. Stroke angle and stroke plane are fully interdependent parameters.
3. Angle of attack varies along the length of the wing; no length-wise twisting

occurs.
4. Angle of attack varies with flying speed; pitch is unchanged as speed is increased.
5. These characteristics suggest that the flight machinery of fruit-flies is con-

siderably simpler than that of larger flying animals.
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EXPLANATION OF PLATES

PLATE I

The wing stroke of Drosophila. Time intervals between individual frames are not uniform since the
series was assembled from random single exposures. Note the camber of the wings in b, c, and d, and
the extended posture of the hind legs (blurs above and lateral to the thorax.)

PLATE 2

A single wing position (early in upstroke) photographed at four different airspeeds (in cm./sec). Note
the similarity in the projected outline of the wings and in the patterns of reflexion of the flash, the latter
particularly dependent on wing pitch.
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